双自旋系统中多量子 NMR 相干的耗散动力学。

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS Journal of magnetic resonance Pub Date : 2024-06-01 DOI:10.1016/j.jmr.2024.107706
Edward B. Fel’dman, Elena I. Kuznetsova, Ksenia V. Panicheva, Sergey G. Vasil’ev, Alexander I. Zenchuk
{"title":"双自旋系统中多量子 NMR 相干的耗散动力学。","authors":"Edward B. Fel’dman,&nbsp;Elena I. Kuznetsova,&nbsp;Ksenia V. Panicheva,&nbsp;Sergey G. Vasil’ev,&nbsp;Alexander I. Zenchuk","doi":"10.1016/j.jmr.2024.107706","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple-quantum (MQ) NMR experiments were performed at a special orientation of a hambergite (Be<sub>2</sub>BO<sub>3</sub>OH) single crystal, which consists of alternating zigzag proton chains. At the chosen orientation, one of the dipolar coupling constants in the chain becomes zero and the system becomes a set of well-isolated dipolar coupled spin pairs. The relaxation of the spin pairs in the MQ NMR experiment was studied on the basis of the Lindblad equation. Fermi’s golden rule was used to investigate the relaxation mechanism. The agreement of the calculated relaxation time with the experimental value (125 μs) suggests that the dipole–dipole interactions with protons surrounding the pair are responsible for the relaxation of MQ coherences.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"363 ","pages":"Article 107706"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissipative dynamics of multiple-quantum NMR coherences in two-spin systems\",\"authors\":\"Edward B. Fel’dman,&nbsp;Elena I. Kuznetsova,&nbsp;Ksenia V. Panicheva,&nbsp;Sergey G. Vasil’ev,&nbsp;Alexander I. Zenchuk\",\"doi\":\"10.1016/j.jmr.2024.107706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multiple-quantum (MQ) NMR experiments were performed at a special orientation of a hambergite (Be<sub>2</sub>BO<sub>3</sub>OH) single crystal, which consists of alternating zigzag proton chains. At the chosen orientation, one of the dipolar coupling constants in the chain becomes zero and the system becomes a set of well-isolated dipolar coupled spin pairs. The relaxation of the spin pairs in the MQ NMR experiment was studied on the basis of the Lindblad equation. Fermi’s golden rule was used to investigate the relaxation mechanism. The agreement of the calculated relaxation time with the experimental value (125 μs) suggests that the dipole–dipole interactions with protons surrounding the pair are responsible for the relaxation of MQ coherences.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"363 \",\"pages\":\"Article 107706\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780724000909\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000909","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

多量子(MQ)核磁共振实验是在由交替之字形质子链组成的晗锰矿(Be2BO3OH)单晶体的一个特殊取向上进行的。在所选取向上,质子链中的一个偶极耦合常数变为零,系统成为一组隔离良好的偶极耦合自旋对。MQ NMR 实验中自旋对的弛豫是根据林德布拉德方程进行研究的。费米黄金法则被用来研究弛豫机制。计算出的弛豫时间与实验值(125 μs)一致,表明自旋对周围质子的偶极-偶极相互作用是 MQ 相干弛豫的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dissipative dynamics of multiple-quantum NMR coherences in two-spin systems

Multiple-quantum (MQ) NMR experiments were performed at a special orientation of a hambergite (Be2BO3OH) single crystal, which consists of alternating zigzag proton chains. At the chosen orientation, one of the dipolar coupling constants in the chain becomes zero and the system becomes a set of well-isolated dipolar coupled spin pairs. The relaxation of the spin pairs in the MQ NMR experiment was studied on the basis of the Lindblad equation. Fermi’s golden rule was used to investigate the relaxation mechanism. The agreement of the calculated relaxation time with the experimental value (125 μs) suggests that the dipole–dipole interactions with protons surrounding the pair are responsible for the relaxation of MQ coherences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
期刊最新文献
Changing the resonant nucleus by altering the static field, compensation of γ and B0 effects in T2 and T2* measurements of porous media A compact and mobile stray-field NMR sensor Eliminating electromagnetic interference for RF shielding-free MRI via k-space convolution: Insights from MR parallel imaging advances Optimizing EPR pulses for broadband excitation and refocusing Proton hyperfine couplings and Overhauser DNP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1