{"title":"哺乳动物表转录组的定量绘图。","authors":"Bo He , Yuting Chen , Chengqi Yi","doi":"10.1016/j.gde.2024.102212","DOIUrl":null,"url":null,"abstract":"<div><p>The epitranscriptome encompasses a diverse array of dynamic and reversible RNA modifications, affecting both coding and noncoding RNAs. Over 170 types of RNA chemical modifications have been identified, underscoring the need for innovative detection methods to deepen our understanding of RNA modification roles and mechanisms. In particular, the base resolution and quantitative information on RNA modifications are critical for understanding the regulation and functions of RNA modifications. Based on detection throughput and principles, existing quantitative RNA modification detection methods can be categorized into two groups, including next-generation sequencing and nanopore direct RNA sequencing. In this review, we focus on methodologies for elucidating the base resolution and stoichiometric information of RNA modifications. In addition, we further discuss the challenges and the potential prospects of the quantitative RNA modification detection methods.</p></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative mapping of the mammalian epitranscriptome\",\"authors\":\"Bo He , Yuting Chen , Chengqi Yi\",\"doi\":\"10.1016/j.gde.2024.102212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The epitranscriptome encompasses a diverse array of dynamic and reversible RNA modifications, affecting both coding and noncoding RNAs. Over 170 types of RNA chemical modifications have been identified, underscoring the need for innovative detection methods to deepen our understanding of RNA modification roles and mechanisms. In particular, the base resolution and quantitative information on RNA modifications are critical for understanding the regulation and functions of RNA modifications. Based on detection throughput and principles, existing quantitative RNA modification detection methods can be categorized into two groups, including next-generation sequencing and nanopore direct RNA sequencing. In this review, we focus on methodologies for elucidating the base resolution and stoichiometric information of RNA modifications. In addition, we further discuss the challenges and the potential prospects of the quantitative RNA modification detection methods.</p></div>\",\"PeriodicalId\":50606,\"journal\":{\"name\":\"Current Opinion in Genetics & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Genetics & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959437X24000613\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000613","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Quantitative mapping of the mammalian epitranscriptome
The epitranscriptome encompasses a diverse array of dynamic and reversible RNA modifications, affecting both coding and noncoding RNAs. Over 170 types of RNA chemical modifications have been identified, underscoring the need for innovative detection methods to deepen our understanding of RNA modification roles and mechanisms. In particular, the base resolution and quantitative information on RNA modifications are critical for understanding the regulation and functions of RNA modifications. Based on detection throughput and principles, existing quantitative RNA modification detection methods can be categorized into two groups, including next-generation sequencing and nanopore direct RNA sequencing. In this review, we focus on methodologies for elucidating the base resolution and stoichiometric information of RNA modifications. In addition, we further discuss the challenges and the potential prospects of the quantitative RNA modification detection methods.
期刊介绍:
Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...]
The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year:
• Cancer Genomics
• Genome Architecture and Expression
• Molecular and genetic basis of disease
• Developmental mechanisms, patterning and evolution
• Cell reprogramming, regeneration and repair
• Genetics of Human Origin / Evolutionary genetics (alternate years)