激光焊接快速成型的 AlSi10Mg 和传统制造的 Al6061 合金

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Welding in the World Pub Date : 2024-05-31 DOI:10.1007/s40194-024-01794-6
A. K. Vishwakarma, D. Debnath, M. D. Pawar, V. Muthiyan, B. Gautam, R. Khatirkar, Himanshu Shekhar, V. D. Hiwarkar
{"title":"激光焊接快速成型的 AlSi10Mg 和传统制造的 Al6061 合金","authors":"A. K. Vishwakarma,&nbsp;D. Debnath,&nbsp;M. D. Pawar,&nbsp;V. Muthiyan,&nbsp;B. Gautam,&nbsp;R. Khatirkar,&nbsp;Himanshu Shekhar,&nbsp;V. D. Hiwarkar","doi":"10.1007/s40194-024-01794-6","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, laser welding of additively manufactured AlSi10Mg was undertaken with AlSi10Mg (similar) and Al6061 (dissimilar) alloy. The aim was to understand the laser weldability of selective laser melting (SLM)-printed AlSi10Mg alloy without filler material. The similar and dissimilar type of butt joints were  prepared, and it is found that dissimilar weldments had better mechanical properties than similar weldments. The heat treatment on these welded plates also improved their mechanical properties. The precipitation of Mg<sub>2</sub>Si particles was evident from the XRD and TEM analysis. The as-built cellular structure was broken due to heat treatment and also near the weld zone in the as-welded plate. It was observed that microhardness increased with increase in Mg<sub>2</sub>Si content after the heat treatment process. The strength of welded samples was less than that of the base metals. The heat treatment results in ~ 20% increase in the tensile strength of the welded samples with significant increase in elongation.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"68 7","pages":"1731 - 1745"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser welding of additively manufactured AlSi10Mg and conventionally manufactured Al6061 alloy\",\"authors\":\"A. K. Vishwakarma,&nbsp;D. Debnath,&nbsp;M. D. Pawar,&nbsp;V. Muthiyan,&nbsp;B. Gautam,&nbsp;R. Khatirkar,&nbsp;Himanshu Shekhar,&nbsp;V. D. Hiwarkar\",\"doi\":\"10.1007/s40194-024-01794-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present study, laser welding of additively manufactured AlSi10Mg was undertaken with AlSi10Mg (similar) and Al6061 (dissimilar) alloy. The aim was to understand the laser weldability of selective laser melting (SLM)-printed AlSi10Mg alloy without filler material. The similar and dissimilar type of butt joints were  prepared, and it is found that dissimilar weldments had better mechanical properties than similar weldments. The heat treatment on these welded plates also improved their mechanical properties. The precipitation of Mg<sub>2</sub>Si particles was evident from the XRD and TEM analysis. The as-built cellular structure was broken due to heat treatment and also near the weld zone in the as-welded plate. It was observed that microhardness increased with increase in Mg<sub>2</sub>Si content after the heat treatment process. The strength of welded samples was less than that of the base metals. The heat treatment results in ~ 20% increase in the tensile strength of the welded samples with significant increase in elongation.</p></div>\",\"PeriodicalId\":809,\"journal\":{\"name\":\"Welding in the World\",\"volume\":\"68 7\",\"pages\":\"1731 - 1745\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Welding in the World\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40194-024-01794-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-024-01794-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,对添加式制造的 AlSi10Mg 与 AlSi10Mg(相似)和 Al6061(不相似)合金进行了激光焊接。目的是了解选择性激光熔化(SLM)打印的 AlSi10Mg 合金在无填充材料情况下的激光焊接性。研究人员制备了相似和不相似类型的对接接头,发现不相似的焊接件比相似的焊接件具有更好的机械性能。对这些焊接板材的热处理也改善了它们的机械性能。从 XRD 和 TEM 分析中可以明显看出 Mg2Si 颗粒的析出。由于热处理的原因,焊接后的板材在焊接区附近的蜂窝结构被破坏。据观察,热处理后,显微硬度随着 Mg2Si 含量的增加而增加。焊接样品的强度低于贱金属。热处理后,焊接样品的抗拉强度提高了约 20%,伸长率显著增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser welding of additively manufactured AlSi10Mg and conventionally manufactured Al6061 alloy

In the present study, laser welding of additively manufactured AlSi10Mg was undertaken with AlSi10Mg (similar) and Al6061 (dissimilar) alloy. The aim was to understand the laser weldability of selective laser melting (SLM)-printed AlSi10Mg alloy without filler material. The similar and dissimilar type of butt joints were  prepared, and it is found that dissimilar weldments had better mechanical properties than similar weldments. The heat treatment on these welded plates also improved their mechanical properties. The precipitation of Mg2Si particles was evident from the XRD and TEM analysis. The as-built cellular structure was broken due to heat treatment and also near the weld zone in the as-welded plate. It was observed that microhardness increased with increase in Mg2Si content after the heat treatment process. The strength of welded samples was less than that of the base metals. The heat treatment results in ~ 20% increase in the tensile strength of the welded samples with significant increase in elongation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
期刊最新文献
Feasibility study on machine learning methods for prediction of process-related parameters during WAAM process using SS-316L filler material Publisher Correction: Novel approach for in-line process monitoring during ultrasonic metal welding of dissimilar wire/terminal joints based on the thermoelectric effect Life cycle assessment in additive manufacturing of copper alloys—comparison between laser and electron beam Effect of Cr addition on microstructure, mechanical properties, and corrosion behavior of weld metal in weathering steel of high-speed train bogie Influence of travel speed on porosity and liquation cracking in cold wire pulsed gas metal arc welding of aa7075-t651 aluminum alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1