{"title":"在直线和环形行走过程中减少人体肌肉激活的外骨骼主动辅助策略","authors":"Wen-Tao Sheng, Ke-Yao Liang, Hai-Bin Tang","doi":"10.1007/s40436-024-00504-1","DOIUrl":null,"url":null,"abstract":"<div><p>The exoskeleton is employed to assist humans in various domains including military missions, rehabilitation, industrial operation, and activities of daily living (ADLs).Walking is a fundamental ADL, and exoskeletons are capable of reducing the activation and metabolism of lower extremity muscles through active assistance during walking. To improve the performance of active assistance strategy, this article proposes a framework using an active hip exoskeleton. Subsequently, it correlates to an already established Bayesian-based human gait recognition algorithm, with a particular focus on linear and circular walking within industrial and ADL contexts. In theorizing this strategy for exoskeletons, this study further reveals, in part, the activation characteristics of human hip muscles for the instruction and regulation of active assistance duration and onset timing. This proposed active assistance strategy provides new insights for enhancing the performance of assistive robots and facilitating human robot interaction within the context of ADLs.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"12 3","pages":"484 - 496"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exoskeleton active assistance strategy for human muscle activation reduction during linear and circular walking\",\"authors\":\"Wen-Tao Sheng, Ke-Yao Liang, Hai-Bin Tang\",\"doi\":\"10.1007/s40436-024-00504-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The exoskeleton is employed to assist humans in various domains including military missions, rehabilitation, industrial operation, and activities of daily living (ADLs).Walking is a fundamental ADL, and exoskeletons are capable of reducing the activation and metabolism of lower extremity muscles through active assistance during walking. To improve the performance of active assistance strategy, this article proposes a framework using an active hip exoskeleton. Subsequently, it correlates to an already established Bayesian-based human gait recognition algorithm, with a particular focus on linear and circular walking within industrial and ADL contexts. In theorizing this strategy for exoskeletons, this study further reveals, in part, the activation characteristics of human hip muscles for the instruction and regulation of active assistance duration and onset timing. This proposed active assistance strategy provides new insights for enhancing the performance of assistive robots and facilitating human robot interaction within the context of ADLs.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"12 3\",\"pages\":\"484 - 496\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-024-00504-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-024-00504-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Exoskeleton active assistance strategy for human muscle activation reduction during linear and circular walking
The exoskeleton is employed to assist humans in various domains including military missions, rehabilitation, industrial operation, and activities of daily living (ADLs).Walking is a fundamental ADL, and exoskeletons are capable of reducing the activation and metabolism of lower extremity muscles through active assistance during walking. To improve the performance of active assistance strategy, this article proposes a framework using an active hip exoskeleton. Subsequently, it correlates to an already established Bayesian-based human gait recognition algorithm, with a particular focus on linear and circular walking within industrial and ADL contexts. In theorizing this strategy for exoskeletons, this study further reveals, in part, the activation characteristics of human hip muscles for the instruction and regulation of active assistance duration and onset timing. This proposed active assistance strategy provides new insights for enhancing the performance of assistive robots and facilitating human robot interaction within the context of ADLs.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.