UGINR:通过隐式神经表征实现大规模非结构化网格缩减

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Visualization Pub Date : 2024-06-01 DOI:10.1007/s12650-024-01003-y
Keyuan Liu, Chenyue Jiao, Xin Gao, Chongke Bi
{"title":"UGINR:通过隐式神经表征实现大规模非结构化网格缩减","authors":"Keyuan Liu, Chenyue Jiao, Xin Gao, Chongke Bi","doi":"10.1007/s12650-024-01003-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Recently, implicit neural representations (INRs) have demonstrated significant capabilities in handling 3D volume data, especially in the context of data compression. However, the majority of research has predominantly focused on structured grids, which are not commonly found in scientific domains, particularly in physics. To address this limitation, we propose an unstructured grid reduction method via implicit neural representation (UGINR). UGINR employs a divide-and-conquer approach; specifically, we segment the large-scale data into pieces based on values. Subsequently, we employ an INR network for each piece to learn its distinctive features. Finally, we integrate these individual networks to achieve the compression goal. To ensure compatibility with established research methods, we sample only the vertices of each cell in the unstructured grid. Through weight quantization, our model can achieve a high compression ratio. To illustrate the effectiveness of the proposed method, we conduct experiments on various datasets, demonstrating our approach’s robustness in scientific visualization and large-scale data compression.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"136 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UGINR: large-scale unstructured grid reduction via implicit neural representation\",\"authors\":\"Keyuan Liu, Chenyue Jiao, Xin Gao, Chongke Bi\",\"doi\":\"10.1007/s12650-024-01003-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Recently, implicit neural representations (INRs) have demonstrated significant capabilities in handling 3D volume data, especially in the context of data compression. However, the majority of research has predominantly focused on structured grids, which are not commonly found in scientific domains, particularly in physics. To address this limitation, we propose an unstructured grid reduction method via implicit neural representation (UGINR). UGINR employs a divide-and-conquer approach; specifically, we segment the large-scale data into pieces based on values. Subsequently, we employ an INR network for each piece to learn its distinctive features. Finally, we integrate these individual networks to achieve the compression goal. To ensure compatibility with established research methods, we sample only the vertices of each cell in the unstructured grid. Through weight quantization, our model can achieve a high compression ratio. To illustrate the effectiveness of the proposed method, we conduct experiments on various datasets, demonstrating our approach’s robustness in scientific visualization and large-scale data compression.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\",\"PeriodicalId\":54756,\"journal\":{\"name\":\"Journal of Visualization\",\"volume\":\"136 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visualization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s12650-024-01003-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12650-024-01003-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要最近,隐式神经表征(INR)在处理三维体积数据方面,尤其是在数据压缩方面表现出了显著的能力。然而,大多数研究主要集中在结构化网格上,而结构化网格在科学领域,尤其是物理学领域并不常见。为了解决这一局限性,我们提出了一种通过隐式神经表示的非结构化网格缩减方法(UGINR)。UGINR 采用分而治之的方法;具体来说,我们根据数值将大规模数据分割成若干块。然后,我们为每块数据建立一个 INR 网络,学习其独特的特征。最后,我们整合这些单独的网络来实现压缩目标。为确保与现有研究方法的兼容性,我们只对非结构化网格中每个单元的顶点进行采样。通过权重量化,我们的模型可以达到很高的压缩率。为了说明所提方法的有效性,我们在各种数据集上进行了实验,证明了我们的方法在科学可视化和大规模数据压缩方面的稳健性。 图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UGINR: large-scale unstructured grid reduction via implicit neural representation

Abstract

Recently, implicit neural representations (INRs) have demonstrated significant capabilities in handling 3D volume data, especially in the context of data compression. However, the majority of research has predominantly focused on structured grids, which are not commonly found in scientific domains, particularly in physics. To address this limitation, we propose an unstructured grid reduction method via implicit neural representation (UGINR). UGINR employs a divide-and-conquer approach; specifically, we segment the large-scale data into pieces based on values. Subsequently, we employ an INR network for each piece to learn its distinctive features. Finally, we integrate these individual networks to achieve the compression goal. To ensure compatibility with established research methods, we sample only the vertices of each cell in the unstructured grid. Through weight quantization, our model can achieve a high compression ratio. To illustrate the effectiveness of the proposed method, we conduct experiments on various datasets, demonstrating our approach’s robustness in scientific visualization and large-scale data compression.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visualization
Journal of Visualization COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.40
自引率
5.90%
发文量
79
审稿时长
>12 weeks
期刊介绍: Visualization is an interdisciplinary imaging science devoted to making the invisible visible through the techniques of experimental visualization and computer-aided visualization. The scope of the Journal is to provide a place to exchange information on the latest visualization technology and its application by the presentation of latest papers of both researchers and technicians.
期刊最新文献
Visualizing particle velocity from dual-camera mixed reality video images using 3D particle tracking velocimetry Numerical investigations of heat transfer enhancement in ionic liquid-piston compressor using cooling pipes Scatterplot selection for dimensionality reduction in multidimensional data visualization Robust and multiresolution sparse processing particle image velocimetry for improvement in spatial resolution A user study of visualisations of spatio-temporal eye tracking data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1