药用植物根瘤菌的多样性和植物生长特性

IF 2.1 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Indian Journal of Microbiology Pub Date : 2024-05-29 DOI:10.1007/s12088-024-01275-w
Dilfuza Jabborova, Bakhodir Mamarasulov, Kakhramon Davranov, Yuriy Enakiev, Neha Bisht, Sachidanand Singh, Svilen Stoyanov, Amar P. Garg
{"title":"药用植物根瘤菌的多样性和植物生长特性","authors":"Dilfuza Jabborova, Bakhodir Mamarasulov, Kakhramon Davranov, Yuriy Enakiev, Neha Bisht, Sachidanand Singh, Svilen Stoyanov, Amar P. Garg","doi":"10.1007/s12088-024-01275-w","DOIUrl":null,"url":null,"abstract":"<p>Microbes in the rhizosphere play a significant role in the growth, development, and efficiency of plants and trees. The rhizospheric area's microbes are reliant on the soil's characteristics and the substances that the plants release. The majority of previous research on medicinal plants concentrated on their bioactive phytochemicals, but this is changing now that it is understood that a large proportion of phytotherapeutic substances are actually created by related microorganisms or through contact with their host. The roots of medicinal plants secrete a large number of secondary metabolites that determine the diversity of microbial communities in their rhizosphere. The dominant bacteria isolated from a variety of medicinal plants include various species of <i>Bacillus</i>, <i>Rhizobium</i>, <i>Pseudomonas</i>, <i>Azotobacter</i>, <i>Burkholderia</i>, <i>Enterobacte</i>, <i>Microbacterium</i>, <i>Serratia</i>, <i>Burkholderia</i>, and <i>Beijerinckia.</i> Actinobacteria also colonize the rhizosphere of medicinal plants that release low molecular weight organic solute that facilitate the solubilisation of inorganic phosphate. Root exudates of medicinal plants resist abiotic stress and accumulate in soil to produce autotoxic effects that exhibit strong obstacles to continuous cropping. Although having a vast bioresource that may be used in agriculture and modern medicine, medicinal plants' microbiomes are largely unknown. The purpose of this review is to (i) Present new insights into the plant microbiome with a focus on medicinal plants, (ii) Provide information about the components of medicinal plants derived from plants and microbes, and (iii) Discuss options for promoting plant growth and protecting plants for commercial cultivation of medicinal plants. The scientific community has paid a lot of attention to the use of rhizobacteria, particularly plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides. By a variety of processes, these rhizobacteria support plant growth, manage plant pests, and foster resilience to a range of abiotic challenges. It also focuses on how PGPR inoculation affects plant growth and survival in stressful environments.</p>","PeriodicalId":13316,"journal":{"name":"Indian Journal of Microbiology","volume":"19 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diversity and Plant Growth Properties of Rhizospheric Bacteria Associated with Medicinal Plants\",\"authors\":\"Dilfuza Jabborova, Bakhodir Mamarasulov, Kakhramon Davranov, Yuriy Enakiev, Neha Bisht, Sachidanand Singh, Svilen Stoyanov, Amar P. Garg\",\"doi\":\"10.1007/s12088-024-01275-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microbes in the rhizosphere play a significant role in the growth, development, and efficiency of plants and trees. The rhizospheric area's microbes are reliant on the soil's characteristics and the substances that the plants release. The majority of previous research on medicinal plants concentrated on their bioactive phytochemicals, but this is changing now that it is understood that a large proportion of phytotherapeutic substances are actually created by related microorganisms or through contact with their host. The roots of medicinal plants secrete a large number of secondary metabolites that determine the diversity of microbial communities in their rhizosphere. The dominant bacteria isolated from a variety of medicinal plants include various species of <i>Bacillus</i>, <i>Rhizobium</i>, <i>Pseudomonas</i>, <i>Azotobacter</i>, <i>Burkholderia</i>, <i>Enterobacte</i>, <i>Microbacterium</i>, <i>Serratia</i>, <i>Burkholderia</i>, and <i>Beijerinckia.</i> Actinobacteria also colonize the rhizosphere of medicinal plants that release low molecular weight organic solute that facilitate the solubilisation of inorganic phosphate. Root exudates of medicinal plants resist abiotic stress and accumulate in soil to produce autotoxic effects that exhibit strong obstacles to continuous cropping. Although having a vast bioresource that may be used in agriculture and modern medicine, medicinal plants' microbiomes are largely unknown. The purpose of this review is to (i) Present new insights into the plant microbiome with a focus on medicinal plants, (ii) Provide information about the components of medicinal plants derived from plants and microbes, and (iii) Discuss options for promoting plant growth and protecting plants for commercial cultivation of medicinal plants. The scientific community has paid a lot of attention to the use of rhizobacteria, particularly plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides. By a variety of processes, these rhizobacteria support plant growth, manage plant pests, and foster resilience to a range of abiotic challenges. It also focuses on how PGPR inoculation affects plant growth and survival in stressful environments.</p>\",\"PeriodicalId\":13316,\"journal\":{\"name\":\"Indian Journal of Microbiology\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12088-024-01275-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12088-024-01275-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根圈微生物对花草树木的生长、发育和效率起着重要作用。根圈微生物依赖于土壤特性和植物释放的物质。以前对药用植物的研究大多集中在其具有生物活性的植物化学物质上,但现在这种情况正在发生变化,因为人们了解到,很大一部分植物治疗物质实际上是由相关微生物或通过与宿主接触产生的。药用植物的根部会分泌大量的次级代谢物,这些次级代谢物决定了根圈微生物群落的多样性。从多种药用植物中分离出的主要细菌包括各种芽孢杆菌、根瘤菌、假单胞菌、氮单胞菌、伯克霍尔德氏菌、肠杆菌、微杆菌、沙雷氏菌、伯克霍尔德氏菌和贝氏菌。放线菌也在药用植物的根瘤层中定植,释放出低分子量的有机溶质,促进无机磷酸盐的溶解。药用植物的根部渗出物可抵抗非生物压力,并在土壤中积累,产生自毒效应,对连续耕作造成严重阻碍。虽然药用植物拥有大量可用于农业和现代医学的生物资源,但其微生物组在很大程度上仍不为人所知。本综述的目的是:(i) 以药用植物为重点,介绍对植物微生物组的新认识;(ii) 提供有关药用植物中来自植物和微生物的成分的信息;(iii) 讨论促进植物生长和保护植物的方案,以促进药用植物的商业化种植。科学界非常重视利用根瘤菌,特别是促进植物生长的根瘤菌(PGPR)来替代化学农药。通过各种过程,这些根瘤菌支持植物生长,控制植物害虫,并增强对一系列非生物挑战的适应能力。本研究还重点关注 PGPR 接种如何影响植物在压力环境中的生长和存活。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diversity and Plant Growth Properties of Rhizospheric Bacteria Associated with Medicinal Plants

Microbes in the rhizosphere play a significant role in the growth, development, and efficiency of plants and trees. The rhizospheric area's microbes are reliant on the soil's characteristics and the substances that the plants release. The majority of previous research on medicinal plants concentrated on their bioactive phytochemicals, but this is changing now that it is understood that a large proportion of phytotherapeutic substances are actually created by related microorganisms or through contact with their host. The roots of medicinal plants secrete a large number of secondary metabolites that determine the diversity of microbial communities in their rhizosphere. The dominant bacteria isolated from a variety of medicinal plants include various species of BacillusRhizobiumPseudomonasAzotobacterBurkholderiaEnterobacteMicrobacterium, SerratiaBurkholderia, and Beijerinckia. Actinobacteria also colonize the rhizosphere of medicinal plants that release low molecular weight organic solute that facilitate the solubilisation of inorganic phosphate. Root exudates of medicinal plants resist abiotic stress and accumulate in soil to produce autotoxic effects that exhibit strong obstacles to continuous cropping. Although having a vast bioresource that may be used in agriculture and modern medicine, medicinal plants' microbiomes are largely unknown. The purpose of this review is to (i) Present new insights into the plant microbiome with a focus on medicinal plants, (ii) Provide information about the components of medicinal plants derived from plants and microbes, and (iii) Discuss options for promoting plant growth and protecting plants for commercial cultivation of medicinal plants. The scientific community has paid a lot of attention to the use of rhizobacteria, particularly plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides. By a variety of processes, these rhizobacteria support plant growth, manage plant pests, and foster resilience to a range of abiotic challenges. It also focuses on how PGPR inoculation affects plant growth and survival in stressful environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Journal of Microbiology
Indian Journal of Microbiology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
6.00
自引率
10.00%
发文量
51
审稿时长
1 months
期刊介绍: Indian Journal of Microbiology is the official organ of the Association of Microbiologists of India (AMI). It publishes full-length papers, short communication reviews and mini reviews on all aspects of microbiological research, published quarterly (March, June, September and December). Areas of special interest include agricultural, food, environmental, industrial, medical, pharmaceutical, veterinary and molecular microbiology.
期刊最新文献
Bionanotechnology: A Paradigm for Advancing Environmental Sustainability Comparative Analysis of Faecal Bacteria in Captive Asian Elephants of Various Age Groups and Musth A Novel Electrochemical Sensing Platform for Detection of Nitrobenzene Using Gadolinium Oxide Nanorods Modified Gold Electrode Nanocomposite Foils of PS/Cu : Dual Functionality of Optical Enhancement and Antibacterial Activity on Aeromonas hydrophila Nanofabrication of Biochar from Cellulosic Waste for Bio-Sensing Application of Waste Water Treatment: Process, Challenges and Future Update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1