单源前驱体衍生 CNWs/Ni2Si/SiOC 纳米复合材料的电磁波吸收特性

Ting Chen, Hanzi Du, Ralf Riedel, Zhaoju Yu
{"title":"单源前驱体衍生 CNWs/Ni2Si/SiOC 纳米复合材料的电磁波吸收特性","authors":"Ting Chen, Hanzi Du, Ralf Riedel, Zhaoju Yu","doi":"10.1002/zaac.202300236","DOIUrl":null,"url":null,"abstract":"This work successfully fabricated a novel CNWs/Ni<jats:sub>2</jats:sub>Si/SiOC nanocomposite ceramic material using a single‐source‐precursor derived ceramic approach. The material exhibits <jats:italic>in‐situ</jats:italic> formation of carbon nanowires (CNWs) and multiple core‐shell nanoparticles such as Ni<jats:sub>2</jats:sub>Si@C and SiC@C. The reaction mechanism of the precursor, the microstructure and phase composition, and the ceramics′ electromagnetic wave (EMW) absorbing properties were thoroughly investigated and discussed. The obtained CNWs/Ni<jats:sub>2</jats:sub>Si/SiOC nanocomposite ceramics possesses a minimum reflection loss (RLmin) of −43.5 dB, indicating excellent EMW absorbing performance. The <jats:italic>in‐situ</jats:italic> formation of CNWs and multi‐core‐shell nanoparticles (Ni<jats:sub>2</jats:sub>Si@C and SiC@C) in the ceramics play a crucial role in enhancing their EMW absorbing properties compared to pure SiOC ceramics.","PeriodicalId":23934,"journal":{"name":"Zeitschrift für anorganische und allgemeine Chemie","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic Wave Absorption Properties of Single‐Source‐Precursor Derived CNWs/Ni2Si/SiOC Nanocomposites\",\"authors\":\"Ting Chen, Hanzi Du, Ralf Riedel, Zhaoju Yu\",\"doi\":\"10.1002/zaac.202300236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work successfully fabricated a novel CNWs/Ni<jats:sub>2</jats:sub>Si/SiOC nanocomposite ceramic material using a single‐source‐precursor derived ceramic approach. The material exhibits <jats:italic>in‐situ</jats:italic> formation of carbon nanowires (CNWs) and multiple core‐shell nanoparticles such as Ni<jats:sub>2</jats:sub>Si@C and SiC@C. The reaction mechanism of the precursor, the microstructure and phase composition, and the ceramics′ electromagnetic wave (EMW) absorbing properties were thoroughly investigated and discussed. The obtained CNWs/Ni<jats:sub>2</jats:sub>Si/SiOC nanocomposite ceramics possesses a minimum reflection loss (RLmin) of −43.5 dB, indicating excellent EMW absorbing performance. The <jats:italic>in‐situ</jats:italic> formation of CNWs and multi‐core‐shell nanoparticles (Ni<jats:sub>2</jats:sub>Si@C and SiC@C) in the ceramics play a crucial role in enhancing their EMW absorbing properties compared to pure SiOC ceramics.\",\"PeriodicalId\":23934,\"journal\":{\"name\":\"Zeitschrift für anorganische und allgemeine Chemie\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für anorganische und allgemeine Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zaac.202300236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für anorganische und allgemeine Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zaac.202300236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用单源前驱体衍生陶瓷的方法,成功制备了一种新型 CNWs/Ni2Si/SiOC 纳米复合陶瓷材料。该材料在原位形成了碳纳米线(CNWs)和多种核壳纳米颗粒,如 Ni2Si@C 和 SiC@C。对前驱体的反应机理、微观结构和相组成以及陶瓷的电磁波吸收特性进行了深入研究和讨论。所获得的 CNWs/Ni2Si/SiOC 纳米复合陶瓷的最小反射损耗(RLmin)为 -43.5 dB,具有优异的电磁波吸收性能。与纯 SiOC 陶瓷相比,CNWs 和多核壳纳米粒子(Ni2Si@C 和 SiC@C)在陶瓷中的原位形成在增强其电磁波吸收性能方面发挥了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electromagnetic Wave Absorption Properties of Single‐Source‐Precursor Derived CNWs/Ni2Si/SiOC Nanocomposites
This work successfully fabricated a novel CNWs/Ni2Si/SiOC nanocomposite ceramic material using a single‐source‐precursor derived ceramic approach. The material exhibits in‐situ formation of carbon nanowires (CNWs) and multiple core‐shell nanoparticles such as Ni2Si@C and SiC@C. The reaction mechanism of the precursor, the microstructure and phase composition, and the ceramics′ electromagnetic wave (EMW) absorbing properties were thoroughly investigated and discussed. The obtained CNWs/Ni2Si/SiOC nanocomposite ceramics possesses a minimum reflection loss (RLmin) of −43.5 dB, indicating excellent EMW absorbing performance. The in‐situ formation of CNWs and multi‐core‐shell nanoparticles (Ni2Si@C and SiC@C) in the ceramics play a crucial role in enhancing their EMW absorbing properties compared to pure SiOC ceramics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oxygen redox activity in battery cathodes and the role of underbonded oxygen High‐Pressure Synthesis and Crystal Structure of the Inoborate Ni[B2O2(OH)4] Synthesis and Single Crystal X‐ray Characterization of [Sn5Bi3]3− Chiral Homodinuclear Dysprosium Macrocyclic Complexes with Single‐molecule Magnetic Behaviours From tin(II) to tin(IV): Following solid‐liquid reactions by microscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1