去除率常数不一定恒定:污水处理厂去除有机微污染物的案例

IF 3.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Science: Water Research & Technology Pub Date : 2024-05-31 DOI:10.1039/d4ew00377b
Tamara J. H. M. van Bergen, A. M. Schipper, D. Mooij, A. M. J. Ragas, M. W. Kuiper, A. J. Hendriks, M. A. J. Huijbregts, R. van Zelm
{"title":"去除率常数不一定恒定:污水处理厂去除有机微污染物的案例","authors":"Tamara J. H. M. van Bergen, A. M. Schipper, D. Mooij, A. M. J. Ragas, M. W. Kuiper, A. J. Hendriks, M. A. J. Huijbregts, R. van Zelm","doi":"10.1039/d4ew00377b","DOIUrl":null,"url":null,"abstract":"The removal of organic micropollutants (OMPs) in wastewater treatment plants (WWTPs) is critical to avoid pollution of the aquatic environment. While it is commonly assumed that removal rates are constant at low concentrations, this assumption remains untested across multiple WWTPs. The aim of this study was to test if removal rate constants of OMPs in activated sludge are indeed constant at low OMP concentrations. To that end, we related removal rate constants of 58 OMPs obtained from 14 WWTPs to influent OMP concentrations by applying linear mixed effect modelling in an all subsets modelling approach, also accounting for WWTP characteristics as well as physicochemical OMP properties. Influent OMP concentration and hydraulic retention time (HRT) were retained as predictors of removal rate constants in all best-supported models (within 2 AIC-units from the best model). The relationship between removal rate constant and concentration varied between OMPs. For most OMPs, the relationship was positive, except for valsartan and 2-hydroxyibuprofen, which may reflect toxic effects at higher concentrations. Our results indicate that the assumption of a constant removal rate at low concentrations is too simplistic and highlight the relevance of considering influent concentration in OMP fate predictions. This in turn may help in optimising OMP removal strategies, for example by concentrating wastewater in WWTPs.","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal rate constants are not necessarily constant: the case of organic micropollutant removal in wastewater treatment plants\",\"authors\":\"Tamara J. H. M. van Bergen, A. M. Schipper, D. Mooij, A. M. J. Ragas, M. W. Kuiper, A. J. Hendriks, M. A. J. Huijbregts, R. van Zelm\",\"doi\":\"10.1039/d4ew00377b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The removal of organic micropollutants (OMPs) in wastewater treatment plants (WWTPs) is critical to avoid pollution of the aquatic environment. While it is commonly assumed that removal rates are constant at low concentrations, this assumption remains untested across multiple WWTPs. The aim of this study was to test if removal rate constants of OMPs in activated sludge are indeed constant at low OMP concentrations. To that end, we related removal rate constants of 58 OMPs obtained from 14 WWTPs to influent OMP concentrations by applying linear mixed effect modelling in an all subsets modelling approach, also accounting for WWTP characteristics as well as physicochemical OMP properties. Influent OMP concentration and hydraulic retention time (HRT) were retained as predictors of removal rate constants in all best-supported models (within 2 AIC-units from the best model). The relationship between removal rate constant and concentration varied between OMPs. For most OMPs, the relationship was positive, except for valsartan and 2-hydroxyibuprofen, which may reflect toxic effects at higher concentrations. Our results indicate that the assumption of a constant removal rate at low concentrations is too simplistic and highlight the relevance of considering influent concentration in OMP fate predictions. This in turn may help in optimising OMP removal strategies, for example by concentrating wastewater in WWTPs.\",\"PeriodicalId\":75,\"journal\":{\"name\":\"Environmental Science: Water Research & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science: Water Research & Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ew00377b\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d4ew00377b","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

污水处理厂(WWTPs)去除有机微污染物(OMPs)对于避免水生环境污染至关重要。虽然人们通常认为去除率在低浓度时是恒定的,但这一假设在多个污水处理厂中仍未得到验证。本研究旨在检验活性污泥中 OMP 的去除率常数在 OMP 浓度较低时是否确实恒定。为此,我们采用线性混合效应建模法,将从 14 个污水处理厂获得的 58 种 OMP 的去除率常数与进水 OMP 浓度联系起来,同时考虑到污水处理厂的特征以及 OMP 的物理化学特性。进水 OMP 浓度和水力停留时间(HRT)在所有最佳支持模型中都被保留为去除率常数的预测因子(与最佳模型的 AIC 值相差 2 个单位以内)。去除率常数与浓度之间的关系因 OMP 而异。除缬沙坦和 2-hydroxyibuprofen 外,大多数 OMP 的去除率常数与浓度呈正相关,这可能反映了较高浓度下的毒性效应。我们的研究结果表明,低浓度下去除率恒定的假设过于简单,并强调了在预测 OMP 最终结果时考虑进水浓度的重要性。这反过来又有助于优化 OMP 去除策略,例如通过在污水处理厂中浓缩废水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Removal rate constants are not necessarily constant: the case of organic micropollutant removal in wastewater treatment plants
The removal of organic micropollutants (OMPs) in wastewater treatment plants (WWTPs) is critical to avoid pollution of the aquatic environment. While it is commonly assumed that removal rates are constant at low concentrations, this assumption remains untested across multiple WWTPs. The aim of this study was to test if removal rate constants of OMPs in activated sludge are indeed constant at low OMP concentrations. To that end, we related removal rate constants of 58 OMPs obtained from 14 WWTPs to influent OMP concentrations by applying linear mixed effect modelling in an all subsets modelling approach, also accounting for WWTP characteristics as well as physicochemical OMP properties. Influent OMP concentration and hydraulic retention time (HRT) were retained as predictors of removal rate constants in all best-supported models (within 2 AIC-units from the best model). The relationship between removal rate constant and concentration varied between OMPs. For most OMPs, the relationship was positive, except for valsartan and 2-hydroxyibuprofen, which may reflect toxic effects at higher concentrations. Our results indicate that the assumption of a constant removal rate at low concentrations is too simplistic and highlight the relevance of considering influent concentration in OMP fate predictions. This in turn may help in optimising OMP removal strategies, for example by concentrating wastewater in WWTPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
期刊最新文献
First report of components responsible for odor sensation from a vertical flow constructed wetland treating combined sewer overflow Per- and polyfluoroalkyl substance separation by NF and RO membranes: a critical evaluation of advances and future perspectives Two Weeks After the 2023 Maui Wildfires: Drinking Water Experiences and Needs Graphitic carbon nitride-based efficient nanocomposite: a low cost and stupefying photocatalyst for the derogation of tetracycline and As3+ in wastewater Removal of calcium from water by zeolites with gravity-driven membrane filtration for water treatment without electricity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1