{"title":"实现人机交互,减轻安全运营中心的警报疲劳","authors":"Mohan Baruwal Chhetri, Shahroz Tariq, Ronal Singh, Fateneh Jalalvand, Cecile Paris, Surya Nepal","doi":"10.1145/3670009","DOIUrl":null,"url":null,"abstract":"<p>Security Operations Centres (SOCs) play a pivotal role in defending organisations against evolving cyber threats. They function as central hubs for detecting, analysing, and responding promptly to cyber incidents with the primary objective of ensuring the confidentiality, integrity, and availability of digital assets. However, they struggle against the growing problem of alert fatigue, where the sheer volume of alerts overwhelms SOC analysts and raises the risk of overlooking critical threats. In recent times, there has been a growing call for human-AI teaming, wherein humans and AI collaborate with each other, leveraging their complementary strengths and compensating for their weaknesses. The rapid advances in AI and the growing integration of AI-enabled tools and technologies within SOCs give rise to a compelling argument for the implementation of human-AI teaming within the SOC environment. Therefore, in this position paper, we present our vision for human-AI teaming to address the problem of alert fatigue in SOC. We propose the \\(\\mathcal {A}^2\\mathcal {C} \\) Framework, which enables flexible and dynamic decision-making by allowing seamless transitions between automated, augmented, and collaborative modes of operation. Our framework allows AI-powered automation for routine alerts, AI-driven augmentation for expedited expert decision-making, and collaborative exploration for tackling complex, novel threats. By implementing and operationalising \\(\\mathcal {A}^2\\mathcal {C} \\), SOCs can significantly reduce alert fatigue while empowering analysts to efficiently and effectively respond to security incidents.</p>","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"13 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Human-AI Teaming to Mitigate Alert Fatigue in Security Operations Centres\",\"authors\":\"Mohan Baruwal Chhetri, Shahroz Tariq, Ronal Singh, Fateneh Jalalvand, Cecile Paris, Surya Nepal\",\"doi\":\"10.1145/3670009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Security Operations Centres (SOCs) play a pivotal role in defending organisations against evolving cyber threats. They function as central hubs for detecting, analysing, and responding promptly to cyber incidents with the primary objective of ensuring the confidentiality, integrity, and availability of digital assets. However, they struggle against the growing problem of alert fatigue, where the sheer volume of alerts overwhelms SOC analysts and raises the risk of overlooking critical threats. In recent times, there has been a growing call for human-AI teaming, wherein humans and AI collaborate with each other, leveraging their complementary strengths and compensating for their weaknesses. The rapid advances in AI and the growing integration of AI-enabled tools and technologies within SOCs give rise to a compelling argument for the implementation of human-AI teaming within the SOC environment. Therefore, in this position paper, we present our vision for human-AI teaming to address the problem of alert fatigue in SOC. We propose the \\\\(\\\\mathcal {A}^2\\\\mathcal {C} \\\\) Framework, which enables flexible and dynamic decision-making by allowing seamless transitions between automated, augmented, and collaborative modes of operation. Our framework allows AI-powered automation for routine alerts, AI-driven augmentation for expedited expert decision-making, and collaborative exploration for tackling complex, novel threats. By implementing and operationalising \\\\(\\\\mathcal {A}^2\\\\mathcal {C} \\\\), SOCs can significantly reduce alert fatigue while empowering analysts to efficiently and effectively respond to security incidents.</p>\",\"PeriodicalId\":50911,\"journal\":{\"name\":\"ACM Transactions on Internet Technology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3670009\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3670009","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Towards Human-AI Teaming to Mitigate Alert Fatigue in Security Operations Centres
Security Operations Centres (SOCs) play a pivotal role in defending organisations against evolving cyber threats. They function as central hubs for detecting, analysing, and responding promptly to cyber incidents with the primary objective of ensuring the confidentiality, integrity, and availability of digital assets. However, they struggle against the growing problem of alert fatigue, where the sheer volume of alerts overwhelms SOC analysts and raises the risk of overlooking critical threats. In recent times, there has been a growing call for human-AI teaming, wherein humans and AI collaborate with each other, leveraging their complementary strengths and compensating for their weaknesses. The rapid advances in AI and the growing integration of AI-enabled tools and technologies within SOCs give rise to a compelling argument for the implementation of human-AI teaming within the SOC environment. Therefore, in this position paper, we present our vision for human-AI teaming to address the problem of alert fatigue in SOC. We propose the \(\mathcal {A}^2\mathcal {C} \) Framework, which enables flexible and dynamic decision-making by allowing seamless transitions between automated, augmented, and collaborative modes of operation. Our framework allows AI-powered automation for routine alerts, AI-driven augmentation for expedited expert decision-making, and collaborative exploration for tackling complex, novel threats. By implementing and operationalising \(\mathcal {A}^2\mathcal {C} \), SOCs can significantly reduce alert fatigue while empowering analysts to efficiently and effectively respond to security incidents.
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.