在热带生物多样性-生态系统功能实验中,树木丰富度影响地表蚂蚁多样性和种子传播

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY Oikos Pub Date : 2024-05-30 DOI:10.1111/oik.10623
Anderson Dantas, Thais A. Vitoriano Dantas, Gislene Ganade, Carlos Roberto Fonseca
{"title":"在热带生物多样性-生态系统功能实验中,树木丰富度影响地表蚂蚁多样性和种子传播","authors":"Anderson Dantas, Thais A. Vitoriano Dantas, Gislene Ganade, Carlos Roberto Fonseca","doi":"10.1111/oik.10623","DOIUrl":null,"url":null,"abstract":"The global loss of plant diversity is expected to have reverberating effects on other trophic levels, affecting the structure and functioning of ecosystems. To understand such effects, biodiversity–ecosystem function (BEF) experiments that manipulate tree diversity have been established around the world. In a BEF experiment carried out since 2016 in a seasonally dry tropical forest, we examined the effects of tree diversity, facilitation and density of trees with extrafloral nectaries on the abundance, richness, functional diversity and phylogenetic diversity of ground ants. Also, we used artificial seeds to test seed dispersal efficiency of ants within the experiment. Generalized linear mixed models (GLMM) showed that tree richness positively affects ant abundance, richness, functional diversity and phylogenetic diversity. Also, tree richness had a strong positive effect on the proportion of dispersed seeds, as well as their dispersal distance. Contrary to our expectations, facilitation and the number of trees with extrafloral nectaries did not affect ground ants and their functions. Our results indicate that the global impoverishment of tree communities can affect several dimensions of ant diversity and their ecosystem functions, including forest regeneration processes.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":"77 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tree richness affects ground‐ant diversity and seed dispersal in a tropical biodiversity–ecosystem function experiment\",\"authors\":\"Anderson Dantas, Thais A. Vitoriano Dantas, Gislene Ganade, Carlos Roberto Fonseca\",\"doi\":\"10.1111/oik.10623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global loss of plant diversity is expected to have reverberating effects on other trophic levels, affecting the structure and functioning of ecosystems. To understand such effects, biodiversity–ecosystem function (BEF) experiments that manipulate tree diversity have been established around the world. In a BEF experiment carried out since 2016 in a seasonally dry tropical forest, we examined the effects of tree diversity, facilitation and density of trees with extrafloral nectaries on the abundance, richness, functional diversity and phylogenetic diversity of ground ants. Also, we used artificial seeds to test seed dispersal efficiency of ants within the experiment. Generalized linear mixed models (GLMM) showed that tree richness positively affects ant abundance, richness, functional diversity and phylogenetic diversity. Also, tree richness had a strong positive effect on the proportion of dispersed seeds, as well as their dispersal distance. Contrary to our expectations, facilitation and the number of trees with extrafloral nectaries did not affect ground ants and their functions. Our results indicate that the global impoverishment of tree communities can affect several dimensions of ant diversity and their ecosystem functions, including forest regeneration processes.\",\"PeriodicalId\":19496,\"journal\":{\"name\":\"Oikos\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oikos\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/oik.10623\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10623","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球植物多样性的丧失预计会对其他营养级产生反响,影响生态系统的结构和功能。为了了解这种影响,世界各地都建立了操纵树木多样性的生物多样性-生态系统功能(BEF)实验。自2016年起,我们在一个季节性干旱的热带森林中开展了一项BEF实验,考察了树木多样性、具有花外蜜腺的树木的促进作用和密度对地蚁的丰度、丰富度、功能多样性和系统发育多样性的影响。此外,我们还在实验中使用人工种子来测试蚂蚁的种子传播效率。广义线性混合模型(GLMM)显示,树木丰富度对蚂蚁的数量、丰富度、功能多样性和系统发育多样性有正向影响。此外,树木的丰富度对种子的散播比例及其散播距离也有很大的正向影响。与我们的预期相反,促进作用和具有花外蜜腺的树木数量并不影响地蚁及其功能。我们的研究结果表明,全球树木群落的贫瘠化会影响蚂蚁多样性的多个方面及其生态系统功能,包括森林再生过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tree richness affects ground‐ant diversity and seed dispersal in a tropical biodiversity–ecosystem function experiment
The global loss of plant diversity is expected to have reverberating effects on other trophic levels, affecting the structure and functioning of ecosystems. To understand such effects, biodiversity–ecosystem function (BEF) experiments that manipulate tree diversity have been established around the world. In a BEF experiment carried out since 2016 in a seasonally dry tropical forest, we examined the effects of tree diversity, facilitation and density of trees with extrafloral nectaries on the abundance, richness, functional diversity and phylogenetic diversity of ground ants. Also, we used artificial seeds to test seed dispersal efficiency of ants within the experiment. Generalized linear mixed models (GLMM) showed that tree richness positively affects ant abundance, richness, functional diversity and phylogenetic diversity. Also, tree richness had a strong positive effect on the proportion of dispersed seeds, as well as their dispersal distance. Contrary to our expectations, facilitation and the number of trees with extrafloral nectaries did not affect ground ants and their functions. Our results indicate that the global impoverishment of tree communities can affect several dimensions of ant diversity and their ecosystem functions, including forest regeneration processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oikos
Oikos 环境科学-生态学
CiteScore
6.20
自引率
5.90%
发文量
152
审稿时长
6-12 weeks
期刊介绍: Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.
期刊最新文献
Linking fine‐root diameter across root orders with climatic, biological and edaphic factors in the Northern Hemisphere Do plants respond to multi‐year disturbance rhythms and are we missing the beat? Importance of accounting for imperfect detection of plants in the estimation of population growth rates Landscape structures and stand attributes jointly regulate forest productivity Evolutionary cycles in a model of nestmate recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1