ST-LSTM-SA:基于深度学习的新型海洋声速场预测模型

IF 6.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Advances in Atmospheric Sciences Pub Date : 2024-06-01 DOI:10.1007/s00376-024-3219-6
Hanxiao Yuan, Yang Liu, Qiuhua Tang, Jie Li, Guanxu Chen, Wuxu Cai
{"title":"ST-LSTM-SA:基于深度学习的新型海洋声速场预测模型","authors":"Hanxiao Yuan, Yang Liu, Qiuhua Tang, Jie Li, Guanxu Chen, Wuxu Cai","doi":"10.1007/s00376-024-3219-6","DOIUrl":null,"url":null,"abstract":"<p>The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean. Among the crucial hydroacoustic environmental parameters, ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research. In this study, we propose a new data-driven approach, leveraging deep learning techniques, for the prediction of sound velocity fields (SVFs). Our novel spatiotemporal prediction model, ST-LSTM-SA, combines Spatiotemporal Long Short-Term Memory (ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs. To circumvent the limited amount of observational data, we employ transfer learning by first training the model using reanalysis datasets, followed by fine-tuning it using in-situ analysis data to obtain the final prediction model. By utilizing the historical 12-month SVFs as input, our model predicts the SVFs for the subsequent three months. We compare the performance of five models: Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Convolutional LSTM (ConvLSTM), ST-LSTM, and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022. Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions. The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field (SVF), but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"50 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ST-LSTM-SA: A New Ocean Sound Velocity Field Prediction Model Based on Deep Learning\",\"authors\":\"Hanxiao Yuan, Yang Liu, Qiuhua Tang, Jie Li, Guanxu Chen, Wuxu Cai\",\"doi\":\"10.1007/s00376-024-3219-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean. Among the crucial hydroacoustic environmental parameters, ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research. In this study, we propose a new data-driven approach, leveraging deep learning techniques, for the prediction of sound velocity fields (SVFs). Our novel spatiotemporal prediction model, ST-LSTM-SA, combines Spatiotemporal Long Short-Term Memory (ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs. To circumvent the limited amount of observational data, we employ transfer learning by first training the model using reanalysis datasets, followed by fine-tuning it using in-situ analysis data to obtain the final prediction model. By utilizing the historical 12-month SVFs as input, our model predicts the SVFs for the subsequent three months. We compare the performance of five models: Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Convolutional LSTM (ConvLSTM), ST-LSTM, and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022. Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions. The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field (SVF), but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.</p>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00376-024-3219-6\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-024-3219-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

原位海洋观测数据的匮乏给实时获取海洋信息带来了挑战。在重要的水声环境参数中,海洋声速具有显著的时空变异性,与海洋研究高度相关。在本研究中,我们提出了一种新的数据驱动方法,利用深度学习技术预测声速场(SVF)。我们的新型时空预测模型 ST-LSTM-SA 将时空长短时记忆(ST-LSTM)与自我注意机制相结合,实现了对 SVF 的准确、实时预测。为了规避观测数据量的限制,我们采用了迁移学习的方法,首先使用再分析数据集训练模型,然后使用现场分析数据对其进行微调,以获得最终的预测模型。利用 12 个月的历史 SVF 作为输入,我们的模型可以预测随后三个月的 SVF。我们比较了五个模型的性能:人工神经网络 (ANN)、长短期记忆 (LSTM)、卷积 LSTM (ConvLSTM)、ST-LSTM 和我们提出的 ST-LSTM-SA 模型。结果表明,ST-LSTM-SA 模型在时间和空间维度上都显著提高了声速预测的准确性和稳定性。ST-LSTM-SA 模型不仅能准确预测海洋声速场(SVF),还能为其他海洋环境变量的时空预测提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ST-LSTM-SA: A New Ocean Sound Velocity Field Prediction Model Based on Deep Learning

The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean. Among the crucial hydroacoustic environmental parameters, ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research. In this study, we propose a new data-driven approach, leveraging deep learning techniques, for the prediction of sound velocity fields (SVFs). Our novel spatiotemporal prediction model, ST-LSTM-SA, combines Spatiotemporal Long Short-Term Memory (ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs. To circumvent the limited amount of observational data, we employ transfer learning by first training the model using reanalysis datasets, followed by fine-tuning it using in-situ analysis data to obtain the final prediction model. By utilizing the historical 12-month SVFs as input, our model predicts the SVFs for the subsequent three months. We compare the performance of five models: Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Convolutional LSTM (ConvLSTM), ST-LSTM, and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022. Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions. The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field (SVF), but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Atmospheric Sciences
Advances in Atmospheric Sciences 地学-气象与大气科学
CiteScore
9.30
自引率
5.20%
发文量
154
审稿时长
6 months
期刊介绍: Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines. Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.
期刊最新文献
Spatiotemporal Evaluation and Future Projection of Diurnal Temperature Range over the Tibetan Plateau in CMIP6 Models Enhanced Cooling Efficiency of Urban Trees on Hotter Summer Days in 70 Cities of China On the Optimal Initial Inner-Core Size for Tropical Cyclone Intensification: An Idealized Numerical Study Improving Satellite-Retrieved Cloud Base Height with Ground-Based Cloud Radar Measurements Effectiveness of Precursor Emission Reductions for the Control of Summertime Ozone and PM2.5 in the Beijing–Tianjin–Hebei Region under Different Meteorological Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1