Hayder M. A. Ghanimi, Sudhakar Sengan, Vijaya Bhaskar Sadu, Parvinder Kaur, Manju Kaushik, Roobaea Alroobaea, Abdullah M. Baqasah, Majed Alsafyani, Pankaj Dadheech
{"title":"基于 MP + CNN + BiLSTM 模型的开源混合模型,用于识别智能手机上的手语","authors":"Hayder M. A. Ghanimi, Sudhakar Sengan, Vijaya Bhaskar Sadu, Parvinder Kaur, Manju Kaushik, Roobaea Alroobaea, Abdullah M. Baqasah, Majed Alsafyani, Pankaj Dadheech","doi":"10.1007/s13198-024-02376-x","DOIUrl":null,"url":null,"abstract":"<p>The communication barriers experienced by deaf and hard-of-hearing individuals often lead to social isolation and limited access to essential services, underlining a critical need for effective and accessible solutions. Recognizing the unique challenges this community faces—such as the scarcity of sign language interpreters, particularly in remote areas, and the lack of real-time translation tools. This paper proposes the development of a smartphone-runnable sign language recognition model to address the communication problems faced by deaf and hard-of-hearing persons. This proposed model combines Mediapipe hand tracking with particle filtering (PF) to accurately detect and track hand movements, and a convolutional neural network (CNN) and bidirectional long short-term memory based gesture recognition model to model the temporal dynamics of Sign Language gestures. These models use a small number of layers and filters, depthwise separable convolutions, and dropout layers to minimize the computational costs and prevent overfitting, making them suitable for smartphone implementation. This article discusses the existing challenges handled by the deaf and hard-of-hearing community and explains how the proposed model could help overcome these challenges. A MediaPipe + PF model performs feature extraction from the image and data preprocessing. During training, with fewer activation functions and parameters, this proposed model performed better to other CNN with RNN variant models (CNN + LSTM, CNN + GRU) used in the experiments of convergence speed and learning efficiency.</p>","PeriodicalId":14463,"journal":{"name":"International Journal of System Assurance Engineering and Management","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An open-source MP + CNN + BiLSTM model-based hybrid model for recognizing sign language on smartphones\",\"authors\":\"Hayder M. A. Ghanimi, Sudhakar Sengan, Vijaya Bhaskar Sadu, Parvinder Kaur, Manju Kaushik, Roobaea Alroobaea, Abdullah M. Baqasah, Majed Alsafyani, Pankaj Dadheech\",\"doi\":\"10.1007/s13198-024-02376-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The communication barriers experienced by deaf and hard-of-hearing individuals often lead to social isolation and limited access to essential services, underlining a critical need for effective and accessible solutions. Recognizing the unique challenges this community faces—such as the scarcity of sign language interpreters, particularly in remote areas, and the lack of real-time translation tools. This paper proposes the development of a smartphone-runnable sign language recognition model to address the communication problems faced by deaf and hard-of-hearing persons. This proposed model combines Mediapipe hand tracking with particle filtering (PF) to accurately detect and track hand movements, and a convolutional neural network (CNN) and bidirectional long short-term memory based gesture recognition model to model the temporal dynamics of Sign Language gestures. These models use a small number of layers and filters, depthwise separable convolutions, and dropout layers to minimize the computational costs and prevent overfitting, making them suitable for smartphone implementation. This article discusses the existing challenges handled by the deaf and hard-of-hearing community and explains how the proposed model could help overcome these challenges. A MediaPipe + PF model performs feature extraction from the image and data preprocessing. During training, with fewer activation functions and parameters, this proposed model performed better to other CNN with RNN variant models (CNN + LSTM, CNN + GRU) used in the experiments of convergence speed and learning efficiency.</p>\",\"PeriodicalId\":14463,\"journal\":{\"name\":\"International Journal of System Assurance Engineering and Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of System Assurance Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13198-024-02376-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of System Assurance Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13198-024-02376-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
An open-source MP + CNN + BiLSTM model-based hybrid model for recognizing sign language on smartphones
The communication barriers experienced by deaf and hard-of-hearing individuals often lead to social isolation and limited access to essential services, underlining a critical need for effective and accessible solutions. Recognizing the unique challenges this community faces—such as the scarcity of sign language interpreters, particularly in remote areas, and the lack of real-time translation tools. This paper proposes the development of a smartphone-runnable sign language recognition model to address the communication problems faced by deaf and hard-of-hearing persons. This proposed model combines Mediapipe hand tracking with particle filtering (PF) to accurately detect and track hand movements, and a convolutional neural network (CNN) and bidirectional long short-term memory based gesture recognition model to model the temporal dynamics of Sign Language gestures. These models use a small number of layers and filters, depthwise separable convolutions, and dropout layers to minimize the computational costs and prevent overfitting, making them suitable for smartphone implementation. This article discusses the existing challenges handled by the deaf and hard-of-hearing community and explains how the proposed model could help overcome these challenges. A MediaPipe + PF model performs feature extraction from the image and data preprocessing. During training, with fewer activation functions and parameters, this proposed model performed better to other CNN with RNN variant models (CNN + LSTM, CNN + GRU) used in the experiments of convergence speed and learning efficiency.
期刊介绍:
This Journal is established with a view to cater to increased awareness for high quality research in the seamless integration of heterogeneous technologies to formulate bankable solutions to the emergent complex engineering problems.
Assurance engineering could be thought of as relating to the provision of higher confidence in the reliable and secure implementation of a system’s critical characteristic features through the espousal of a holistic approach by using a wide variety of cross disciplinary tools and techniques. Successful realization of sustainable and dependable products, systems and services involves an extensive adoption of Reliability, Quality, Safety and Risk related procedures for achieving high assurancelevels of performance; also pivotal are the management issues related to risk and uncertainty that govern the practical constraints encountered in their deployment. It is our intention to provide a platform for the modeling and analysis of large engineering systems, among the other aforementioned allied goals of systems assurance engineering, leading to the enforcement of performance enhancement measures. Achieving a fine balance between theory and practice is the primary focus. The Journal only publishes high quality papers that have passed the rigorous peer review procedure of an archival scientific Journal. The aim is an increasing number of submissions, wide circulation and a high impact factor.