油气管道天然气水合物形成条件的分析预测

IF 0.6 4区 化学 Q4 CHEMISTRY, APPLIED Russian Journal of Applied Chemistry Pub Date : 2024-06-10 DOI:10.1134/s107042722401004x
Firas Basim Ismail, M. Iezzul Firdaus Yuhana, Salam A. Mohammed, Laith S. Sabri
{"title":"油气管道天然气水合物形成条件的分析预测","authors":"Firas Basim Ismail, M. Iezzul Firdaus Yuhana, Salam A. Mohammed, Laith S. Sabri","doi":"10.1134/s107042722401004x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Oil and gas production operations, particularly those involving subsea production systems, are frequently subjected to harsh underwater conditions characterized by low temperatures and high pressures, owing to the placement of most subsea facilities on the seabed. These challenging environmental factors often lead to the formation of gas hydrates, especially in the presence of moisture within the production fluidIn this study, A suggestion is made to employ an underwater wireless sensor network (UWSN) to showcase the viability of real-time monitoring of pipeline health conditions, aiming to mitigate problems associated with hydrate formation in oil and gas pipelines. Additionally, A predictive analytical model for gas hydrate formation in these pipelines is crafted using Aspen HYSYS simulation and Feed-Forward Artificial Neural Network (ANN) modeling. The development of this prediction model and the potential application of UWSN technology in the oil and gas production field could assist operators in making informed decisions regarding intervention processes for addressing hydrate-related challenges in pipelines.</p>","PeriodicalId":757,"journal":{"name":"Russian Journal of Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Prediction of Gas Hydrate Formation Conditions for Oil and Gas Pipeline\",\"authors\":\"Firas Basim Ismail, M. Iezzul Firdaus Yuhana, Salam A. Mohammed, Laith S. Sabri\",\"doi\":\"10.1134/s107042722401004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Oil and gas production operations, particularly those involving subsea production systems, are frequently subjected to harsh underwater conditions characterized by low temperatures and high pressures, owing to the placement of most subsea facilities on the seabed. These challenging environmental factors often lead to the formation of gas hydrates, especially in the presence of moisture within the production fluidIn this study, A suggestion is made to employ an underwater wireless sensor network (UWSN) to showcase the viability of real-time monitoring of pipeline health conditions, aiming to mitigate problems associated with hydrate formation in oil and gas pipelines. Additionally, A predictive analytical model for gas hydrate formation in these pipelines is crafted using Aspen HYSYS simulation and Feed-Forward Artificial Neural Network (ANN) modeling. The development of this prediction model and the potential application of UWSN technology in the oil and gas production field could assist operators in making informed decisions regarding intervention processes for addressing hydrate-related challenges in pipelines.</p>\",\"PeriodicalId\":757,\"journal\":{\"name\":\"Russian Journal of Applied Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Applied Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1134/s107042722401004x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s107042722401004x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 石油和天然气生产作业,特别是涉及海底生产系统的作业,由于大多数海底设施位于海床上,因此经常会受到低温和高压等恶劣水下条件的影响。本研究建议采用水下无线传感器网络(UWSN)来展示实时监测管道健康状况的可行性,旨在缓解与油气管道水合物形成相关的问题。此外,还利用 Aspen HYSYS 仿真和前馈人工神经网络 (ANN) 建模,建立了这些管道中天然气水合物形成的预测分析模型。该预测模型的开发以及 UWSN 技术在油气生产领域的潜在应用,可帮助运营商就干预过程做出明智决策,以应对管道中与水合物相关的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical Prediction of Gas Hydrate Formation Conditions for Oil and Gas Pipeline

Abstract

Oil and gas production operations, particularly those involving subsea production systems, are frequently subjected to harsh underwater conditions characterized by low temperatures and high pressures, owing to the placement of most subsea facilities on the seabed. These challenging environmental factors often lead to the formation of gas hydrates, especially in the presence of moisture within the production fluidIn this study, A suggestion is made to employ an underwater wireless sensor network (UWSN) to showcase the viability of real-time monitoring of pipeline health conditions, aiming to mitigate problems associated with hydrate formation in oil and gas pipelines. Additionally, A predictive analytical model for gas hydrate formation in these pipelines is crafted using Aspen HYSYS simulation and Feed-Forward Artificial Neural Network (ANN) modeling. The development of this prediction model and the potential application of UWSN technology in the oil and gas production field could assist operators in making informed decisions regarding intervention processes for addressing hydrate-related challenges in pipelines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
63
审稿时长
2-4 weeks
期刊介绍: Russian Journal of Applied Chemistry (Zhurnal prikladnoi khimii) was founded in 1928. It covers all application problems of modern chemistry, including the structure of inorganic and organic compounds, kinetics and mechanisms of chemical reactions, problems of chemical processes and apparatus, borderline problems of chemistry, and applied research.
期刊最新文献
Sorption of Gases in Additive Polynorbornene with Norbornyl Substituents Pyrolysis of Polyethylene Terephthalate: Process Features and Composition of Reaction Products Electrochemical Deposition of Iridium onto Gallium Arsenide from a Sulfamate Electrolyte Based on Hexachloroiridic(IV) Acid CrOx–SiO2 Catalysts in Nonoxidative Propane Dehydrogenation: Effect of Adding Cerium Dioxide Hydrogen Decrepitation of NdFeB End-of-Life Magnets with the Preliminary Three-Step Surface Cleaning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1