Mahmoud Bakr, Kai Masuda, Yoshiyuki Takahashi, Tsuyoshi Misawa, Norio Yamakawa, Tomas Scott
{"title":"特殊核材料无损主动询问系统:原理验证和初步结果","authors":"Mahmoud Bakr, Kai Masuda, Yoshiyuki Takahashi, Tsuyoshi Misawa, Norio Yamakawa, Tomas Scott","doi":"10.1007/s41365-024-01458-6","DOIUrl":null,"url":null,"abstract":"<p>Herein, we employ the threshold energy neutron analysis (TENA) technique to introduce the world's first active interrogation system to detect special nuclear materials (SNMs), including U-235 and Pu-239. The system utilizes a DD neutron generator based on inertial electrostatic confinement (IEC) to interrogate suspicious objects. To detect secondary neutrons produced during fission reactions induced in SNMs, a tensioned metastable fluid detector (TMFD) is employed. The current status of the system's development is reported in this paper, accompanied by the results from experiments conducted to detect 10 g of highly enriched uranium (HEU). Notably, the experimental findings demonstrate a distinct difference in the count rates of measurements with and without HEU. This difference in count rates surpasses two times the standard deviation, indicating a confidence level of more than 96% for identifying the presence of HEU. The paper presents and extensively discusses the proof-of-principle experimental results, along with the system's planned trajectory.</p>","PeriodicalId":19177,"journal":{"name":"Nuclear Science and Techniques","volume":"76 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nondestructive and active interrogation system for special nuclear material: proof of principle and initial results\",\"authors\":\"Mahmoud Bakr, Kai Masuda, Yoshiyuki Takahashi, Tsuyoshi Misawa, Norio Yamakawa, Tomas Scott\",\"doi\":\"10.1007/s41365-024-01458-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Herein, we employ the threshold energy neutron analysis (TENA) technique to introduce the world's first active interrogation system to detect special nuclear materials (SNMs), including U-235 and Pu-239. The system utilizes a DD neutron generator based on inertial electrostatic confinement (IEC) to interrogate suspicious objects. To detect secondary neutrons produced during fission reactions induced in SNMs, a tensioned metastable fluid detector (TMFD) is employed. The current status of the system's development is reported in this paper, accompanied by the results from experiments conducted to detect 10 g of highly enriched uranium (HEU). Notably, the experimental findings demonstrate a distinct difference in the count rates of measurements with and without HEU. This difference in count rates surpasses two times the standard deviation, indicating a confidence level of more than 96% for identifying the presence of HEU. The paper presents and extensively discusses the proof-of-principle experimental results, along with the system's planned trajectory.</p>\",\"PeriodicalId\":19177,\"journal\":{\"name\":\"Nuclear Science and Techniques\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Science and Techniques\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s41365-024-01458-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Techniques","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s41365-024-01458-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Nondestructive and active interrogation system for special nuclear material: proof of principle and initial results
Herein, we employ the threshold energy neutron analysis (TENA) technique to introduce the world's first active interrogation system to detect special nuclear materials (SNMs), including U-235 and Pu-239. The system utilizes a DD neutron generator based on inertial electrostatic confinement (IEC) to interrogate suspicious objects. To detect secondary neutrons produced during fission reactions induced in SNMs, a tensioned metastable fluid detector (TMFD) is employed. The current status of the system's development is reported in this paper, accompanied by the results from experiments conducted to detect 10 g of highly enriched uranium (HEU). Notably, the experimental findings demonstrate a distinct difference in the count rates of measurements with and without HEU. This difference in count rates surpasses two times the standard deviation, indicating a confidence level of more than 96% for identifying the presence of HEU. The paper presents and extensively discusses the proof-of-principle experimental results, along with the system's planned trajectory.
期刊介绍:
Nuclear Science and Techniques (NST) reports scientific findings, technical advances and important results in the fields of nuclear science and techniques. The aim of this periodical is to stimulate cross-fertilization of knowledge among scientists and engineers working in the fields of nuclear research.
Scope covers the following subjects:
• Synchrotron radiation applications, beamline technology;
• Accelerator, ray technology and applications;
• Nuclear chemistry, radiochemistry, radiopharmaceuticals, nuclear medicine;
• Nuclear electronics and instrumentation;
• Nuclear physics and interdisciplinary research;
• Nuclear energy science and engineering.