作为流行病学分析策略的风险量化:对油棕芽腐病的分析和应用

IF 2.3 3区 农林科学 Q1 AGRONOMY Plant Pathology Pub Date : 2024-05-30 DOI:10.1111/ppa.13949
Joaquín Guillermo Ramírez‐Gil, Carlos Mauricio Rivera‐Lozano, Aníbal L. Tapiero
{"title":"作为流行病学分析策略的风险量化:对油棕芽腐病的分析和应用","authors":"Joaquín Guillermo Ramírez‐Gil, Carlos Mauricio Rivera‐Lozano, Aníbal L. Tapiero","doi":"10.1111/ppa.13949","DOIUrl":null,"url":null,"abstract":"Bud rot (BR), caused by <jats:italic>Phytophthora palmivora</jats:italic>, limits growth and development of oil palms in the American continent, particularly in Colombia. Due to the absence of systematic epidemiological analyses and determination of risk factors associated with BR, this study aimed to employ deterministic mathematical models and frequentist and Bayesian statistical methods to quantify the genetic response and edaphoclimatic variables as risk indicators of BR. From 2011 to 2014, the severity of BR in oil palm crops was recorded monthly in two locations: Tumaco (hot spot) and Villavicencio (cold spot), determining the edaphoclimatic variables at each site. Using the area under the disease progress stairs curve, temporal models were applied to determine the rate of disease development (<jats:italic>R</jats:italic><jats:sub>0</jats:sub>) to quantify risk at locality and genotype levels. Subsequently, the observed intensity and severity levels of BR were adjusted to models such as survival curves, Cox proportional hazard risk and transition probabilities, or Markov states, with the aim of quantifying and characterizing risk factors associated with genotype and edaphoclimatic variables at each location. The risk in Tumaco was three times higher than in Villavicencio, and the <jats:italic>R</jats:italic><jats:sub>0</jats:sub> values were differential by genotype, with Tenera more susceptible than Hybrids. Moreover, the risk of BR increased when periods of 2–3 months occurred with successive instances of precipitation and relative humidity greater than 150 mm/month and 90%, respectively, and when manganese and zinc levels were below optimal. This approach allowed us to characterize epidemiological factors that cause plant diseases, allowing quantification of the risk of BR.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"69 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk quantification as an epidemiological analysis strategy: Analysis and application to bud rot in oil palm\",\"authors\":\"Joaquín Guillermo Ramírez‐Gil, Carlos Mauricio Rivera‐Lozano, Aníbal L. Tapiero\",\"doi\":\"10.1111/ppa.13949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bud rot (BR), caused by <jats:italic>Phytophthora palmivora</jats:italic>, limits growth and development of oil palms in the American continent, particularly in Colombia. Due to the absence of systematic epidemiological analyses and determination of risk factors associated with BR, this study aimed to employ deterministic mathematical models and frequentist and Bayesian statistical methods to quantify the genetic response and edaphoclimatic variables as risk indicators of BR. From 2011 to 2014, the severity of BR in oil palm crops was recorded monthly in two locations: Tumaco (hot spot) and Villavicencio (cold spot), determining the edaphoclimatic variables at each site. Using the area under the disease progress stairs curve, temporal models were applied to determine the rate of disease development (<jats:italic>R</jats:italic><jats:sub>0</jats:sub>) to quantify risk at locality and genotype levels. Subsequently, the observed intensity and severity levels of BR were adjusted to models such as survival curves, Cox proportional hazard risk and transition probabilities, or Markov states, with the aim of quantifying and characterizing risk factors associated with genotype and edaphoclimatic variables at each location. The risk in Tumaco was three times higher than in Villavicencio, and the <jats:italic>R</jats:italic><jats:sub>0</jats:sub> values were differential by genotype, with Tenera more susceptible than Hybrids. Moreover, the risk of BR increased when periods of 2–3 months occurred with successive instances of precipitation and relative humidity greater than 150 mm/month and 90%, respectively, and when manganese and zinc levels were below optimal. This approach allowed us to characterize epidemiological factors that cause plant diseases, allowing quantification of the risk of BR.\",\"PeriodicalId\":20075,\"journal\":{\"name\":\"Plant Pathology\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/ppa.13949\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13949","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

由棕榈疫霉菌(Phytophthora palmivora)引起的芽腐病(BR)限制了美洲大陆(尤其是哥伦比亚)油棕榈树的生长和发育。由于缺乏系统的流行病学分析以及与芽腐病相关的风险因素的确定,本研究旨在采用确定性数学模型以及频数主义和贝叶斯统计方法来量化作为芽腐病风险指标的遗传响应和气候变量。从 2011 年到 2014 年,在两个地点每月记录油棕榈树作物 BR 的严重程度:图马科(热点地区)和维拉维森西奥(冷点地区),确定了每个地点的气候变量。利用病害发展阶梯曲线下的面积,采用时间模型确定病害发展速度(R0),以量化地点和基因型的风险。随后,将观测到的 BR 强度和严重程度调整为生存曲线、Cox 比例危险风险和过渡概率或马尔可夫状态等模型,目的是量化和描述与各地基因型和气候变量相关的风险因素。图马科的风险是维拉维森西奥的三倍,R0值因基因型而异,特纳拉比杂交种更易受影响。此外,当连续 2-3 个月降水量和相对湿度分别超过 150 毫米/月和 90%,以及锰和锌含量低于最佳水平时,BR 的风险也会增加。通过这种方法,我们可以确定导致植物病害的流行病学因素的特征,从而量化白叶枯病的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Risk quantification as an epidemiological analysis strategy: Analysis and application to bud rot in oil palm
Bud rot (BR), caused by Phytophthora palmivora, limits growth and development of oil palms in the American continent, particularly in Colombia. Due to the absence of systematic epidemiological analyses and determination of risk factors associated with BR, this study aimed to employ deterministic mathematical models and frequentist and Bayesian statistical methods to quantify the genetic response and edaphoclimatic variables as risk indicators of BR. From 2011 to 2014, the severity of BR in oil palm crops was recorded monthly in two locations: Tumaco (hot spot) and Villavicencio (cold spot), determining the edaphoclimatic variables at each site. Using the area under the disease progress stairs curve, temporal models were applied to determine the rate of disease development (R0) to quantify risk at locality and genotype levels. Subsequently, the observed intensity and severity levels of BR were adjusted to models such as survival curves, Cox proportional hazard risk and transition probabilities, or Markov states, with the aim of quantifying and characterizing risk factors associated with genotype and edaphoclimatic variables at each location. The risk in Tumaco was three times higher than in Villavicencio, and the R0 values were differential by genotype, with Tenera more susceptible than Hybrids. Moreover, the risk of BR increased when periods of 2–3 months occurred with successive instances of precipitation and relative humidity greater than 150 mm/month and 90%, respectively, and when manganese and zinc levels were below optimal. This approach allowed us to characterize epidemiological factors that cause plant diseases, allowing quantification of the risk of BR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Pathology
Plant Pathology 生物-农艺学
CiteScore
5.60
自引率
7.40%
发文量
147
审稿时长
3 months
期刊介绍: This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.
期刊最新文献
Meloidogyne hapla dominates plant‐parasitic nematode communities associated with kiwifruit orchards in Portugal The growth‐promoting effects of Bacillus amyloliquefaciens W82T‐44 on soybean and its biocontrol potential against soybean Phytophthora root rot Genetic diversity and incidence of cassava bacterial blight (CBB) caused by Xanthomonas phaseoli pv. manihotis in Burkina Faso Control of root rot of red raspberries caused by Phytophthora fragariae var. rubi Molecular epidemiology of Cercospora leaf spot on resistant and susceptible sugar beet hybrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1