以裂缝为毛细管屏障的饱和-非饱和流动模型

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-05-31 DOI:10.1002/vzj2.20345
Jhabriel Varela, Eirik Keilegavlen, Jan M. Nordbotten, Florin A. Radu
{"title":"以裂缝为毛细管屏障的饱和-非饱和流动模型","authors":"Jhabriel Varela, Eirik Keilegavlen, Jan M. Nordbotten, Florin A. Radu","doi":"10.1002/vzj2.20345","DOIUrl":null,"url":null,"abstract":"High‐resolution modeling of the flow dynamics in fractured soils is highly complex and computationally demanding as it requires precise geometrical description of the fractures in addition to resolving a multiphase free‐flow problem inside the fractures. In this paper, we present an idealized model for saturated–unsaturated flow in fractured soils that preserves the core aspects of fractured flow dynamics using an explicit representation of the fractures. The model is based on Richards’ equation in the matrix and hydrostatic equilibrium in the fractures. While the first modeling choice is standard, the latter is motivated by the difference in flow regimes between matrix and fractures, that is, the water velocity inside the fractures is considerably larger than in the soil even under saturated conditions. On matrix/fracture interfaces, the model permits water exchange between matrix and fractures only when the capillary barrier offered by the presence of air inside the fractures is overcome. Thus, depending on the wetting conditions, fractures can either act as impervious barriers or as paths for rapid water flow. Since in numerical simulations each fracture face in the computational grid is a potential seepage face, solving the resulting system of nonlinear equations is a nontrivial task. Here, we propose a general framework based on a discrete‐fracture matrix approach, a finite volume discretization of the equations, and a practical iterative technique to solve the conditional flow at the interfaces. Numerical examples support the mathematical validity and the physical applicability of the model.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A model for saturated–unsaturated flow with fractures acting as capillary barriers\",\"authors\":\"Jhabriel Varela, Eirik Keilegavlen, Jan M. Nordbotten, Florin A. Radu\",\"doi\":\"10.1002/vzj2.20345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High‐resolution modeling of the flow dynamics in fractured soils is highly complex and computationally demanding as it requires precise geometrical description of the fractures in addition to resolving a multiphase free‐flow problem inside the fractures. In this paper, we present an idealized model for saturated–unsaturated flow in fractured soils that preserves the core aspects of fractured flow dynamics using an explicit representation of the fractures. The model is based on Richards’ equation in the matrix and hydrostatic equilibrium in the fractures. While the first modeling choice is standard, the latter is motivated by the difference in flow regimes between matrix and fractures, that is, the water velocity inside the fractures is considerably larger than in the soil even under saturated conditions. On matrix/fracture interfaces, the model permits water exchange between matrix and fractures only when the capillary barrier offered by the presence of air inside the fractures is overcome. Thus, depending on the wetting conditions, fractures can either act as impervious barriers or as paths for rapid water flow. Since in numerical simulations each fracture face in the computational grid is a potential seepage face, solving the resulting system of nonlinear equations is a nontrivial task. Here, we propose a general framework based on a discrete‐fracture matrix approach, a finite volume discretization of the equations, and a practical iterative technique to solve the conditional flow at the interfaces. Numerical examples support the mathematical validity and the physical applicability of the model.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/vzj2.20345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/vzj2.20345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

断裂土壤中流动动力学的高分辨率建模非常复杂,对计算要求很高,因为除了要解决断裂内部的多相自由流动问题外,还需要对断裂进行精确的几何描述。在本文中,我们提出了一种理想化的断裂土壤中饱和-非饱和流动模型,该模型通过明确表示裂缝,保留了断裂流动动力学的核心内容。该模型基于基质中的理查兹方程和裂缝中的静水平衡。前一种建模选择是标准的,而后一种建模选择则是由于基质和裂缝之间的流态不同,即即使在饱和条件下,裂缝内的水流速度也比土壤中的大得多。在基质/裂缝界面上,只有当裂缝内存在的空气所提供的毛细管屏障被克服时,模型才允许基质和裂缝之间进行水交换。因此,根据湿润条件,裂缝既可以作为不透水的屏障,也可以作为水快速流动的通道。由于在数值模拟中,计算网格中的每个断裂面都是潜在的渗流面,因此求解由此产生的非线性方程组并非易事。在此,我们提出了一个基于离散断裂矩阵方法、有限体积离散方程和实用迭代技术的总体框架,以解决界面上的条件流问题。数值示例证明了模型的数学有效性和物理适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A model for saturated–unsaturated flow with fractures acting as capillary barriers
High‐resolution modeling of the flow dynamics in fractured soils is highly complex and computationally demanding as it requires precise geometrical description of the fractures in addition to resolving a multiphase free‐flow problem inside the fractures. In this paper, we present an idealized model for saturated–unsaturated flow in fractured soils that preserves the core aspects of fractured flow dynamics using an explicit representation of the fractures. The model is based on Richards’ equation in the matrix and hydrostatic equilibrium in the fractures. While the first modeling choice is standard, the latter is motivated by the difference in flow regimes between matrix and fractures, that is, the water velocity inside the fractures is considerably larger than in the soil even under saturated conditions. On matrix/fracture interfaces, the model permits water exchange between matrix and fractures only when the capillary barrier offered by the presence of air inside the fractures is overcome. Thus, depending on the wetting conditions, fractures can either act as impervious barriers or as paths for rapid water flow. Since in numerical simulations each fracture face in the computational grid is a potential seepage face, solving the resulting system of nonlinear equations is a nontrivial task. Here, we propose a general framework based on a discrete‐fracture matrix approach, a finite volume discretization of the equations, and a practical iterative technique to solve the conditional flow at the interfaces. Numerical examples support the mathematical validity and the physical applicability of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1