利用递归网络的链接密度追踪动态转变

Rinku Jacob, R. Misra, K P Harikrishnan, G Ambika
{"title":"利用递归网络的链接密度追踪动态转变","authors":"Rinku Jacob, R. Misra, K P Harikrishnan, G Ambika","doi":"arxiv-2405.19357","DOIUrl":null,"url":null,"abstract":"We present Link Density (LD) computed from the Recurrence Network (RN) of a\ntime series data as an effective measure that can detect dynamical transitions\nin a system. We illustrate its use using time series from the standard Rossler\nsystem in the period doubling transitions and the transition to chaos.\nMoreover, we find that the standard deviation of LD can be more effective in\nhighlighting the transition points. We also consider the variations in data\nwhen the parameter of the system is varying due to internal or intrinsic\nperturbations but at a time scale much slower than that of the dynamics. In\nthis case also, the measure LD and its standard deviation correctly detect\ntransition points in the underlying dynamics of the system. The computation of\nLD requires minimal computing resources and time, and works well with short\ndata sets. Hence, we propose this measure as a tool to track transitions in\ndynamics from data, facilitating quicker and more effective analysis of large\nnumber of data sets.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking Dynamical Transitions using Link Density of Recurrence Networks\",\"authors\":\"Rinku Jacob, R. Misra, K P Harikrishnan, G Ambika\",\"doi\":\"arxiv-2405.19357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Link Density (LD) computed from the Recurrence Network (RN) of a\\ntime series data as an effective measure that can detect dynamical transitions\\nin a system. We illustrate its use using time series from the standard Rossler\\nsystem in the period doubling transitions and the transition to chaos.\\nMoreover, we find that the standard deviation of LD can be more effective in\\nhighlighting the transition points. We also consider the variations in data\\nwhen the parameter of the system is varying due to internal or intrinsic\\nperturbations but at a time scale much slower than that of the dynamics. In\\nthis case also, the measure LD and its standard deviation correctly detect\\ntransition points in the underlying dynamics of the system. The computation of\\nLD requires minimal computing resources and time, and works well with short\\ndata sets. Hence, we propose this measure as a tool to track transitions in\\ndynamics from data, facilitating quicker and more effective analysis of large\\nnumber of data sets.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.19357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.19357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将根据时间序列数据的递推网络(RN)计算出的链接密度(LD)作为一种有效的测量方法,用于检测系统中的动态转变。此外,我们发现 LD 的标准偏差能更有效地突出过渡点。我们还考虑了当系统参数因内部或内在扰动而变化,但其时间尺度远慢于动力学时间尺度时的数据变化。在这种情况下,度量 LD 及其标准偏差也能正确检测出系统底层动力学中的过渡点。计算 LD 只需极少的计算资源和时间,而且在数据集较短的情况下也能很好地工作。因此,我们建议将此度量作为一种从数据中跟踪动力学过渡的工具,以便更快、更有效地分析大量数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking Dynamical Transitions using Link Density of Recurrence Networks
We present Link Density (LD) computed from the Recurrence Network (RN) of a time series data as an effective measure that can detect dynamical transitions in a system. We illustrate its use using time series from the standard Rossler system in the period doubling transitions and the transition to chaos. Moreover, we find that the standard deviation of LD can be more effective in highlighting the transition points. We also consider the variations in data when the parameter of the system is varying due to internal or intrinsic perturbations but at a time scale much slower than that of the dynamics. In this case also, the measure LD and its standard deviation correctly detect transition points in the underlying dynamics of the system. The computation of LD requires minimal computing resources and time, and works well with short data sets. Hence, we propose this measure as a tool to track transitions in dynamics from data, facilitating quicker and more effective analysis of large number of data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1