自动前向模型参数化与构象群体的贝叶斯推断

Robert M. Raddi, Tim Marshall, Vincent A. Voelz
{"title":"自动前向模型参数化与构象群体的贝叶斯推断","authors":"Robert M. Raddi, Tim Marshall, Vincent A. Voelz","doi":"arxiv-2405.18532","DOIUrl":null,"url":null,"abstract":"To quantify how well theoretical predictions of structural ensembles agree\nwith experimental measurements, we depend on the accuracy of forward models.\nThese models are computational frameworks that generate observable quantities\nfrom molecular configurations based on empirical relationships linking specific\nmolecular properties to experimental measurements. Bayesian Inference of\nConformational Populations (BICePs) is a reweighting algorithm that reconciles\nsimulated ensembles with ensemble-averaged experimental observations, even when\nsuch observations are sparse and/or noisy. This is achieved by sampling the\nposterior distribution of conformational populations under experimental\nrestraints as well as sampling the posterior distribution of uncertainties due\nto random and systematic error. In this study, we enhance the algorithm for the\nrefinement of empirical forward model (FM) parameters. We introduce and\nevaluate two novel methods for optimizing FM parameters. The first method\ntreats FM parameters as nuisance parameters, integrating over them in the full\nposterior distribution. The second method employs variational minimization of a\nquantity called the BICePs score that reports the free energy of `turning on`\nthe experimental restraints. This technique, coupled with improved likelihood\nfunctions for handling experimental outliers, facilitates force field\nvalidation and optimization, as illustrated in recent studies (Raddi et al.\n2023, 2024). Using this approach, we refine parameters that modulate the\nKarplus relation, crucial for accurate predictions of J-coupling constants\nbased on dihedral angles between interacting nuclei. We validate this approach\nfirst with a toy model system, and then for human ubiquitin, predicting six\nsets of Karplus parameters. This approach, which does not rely on predetermined\nparameters, enhances predictive accuracy and can be used for many applications.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Forward Model Parameterization with Bayesian Inference of Conformational Populations\",\"authors\":\"Robert M. Raddi, Tim Marshall, Vincent A. Voelz\",\"doi\":\"arxiv-2405.18532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To quantify how well theoretical predictions of structural ensembles agree\\nwith experimental measurements, we depend on the accuracy of forward models.\\nThese models are computational frameworks that generate observable quantities\\nfrom molecular configurations based on empirical relationships linking specific\\nmolecular properties to experimental measurements. Bayesian Inference of\\nConformational Populations (BICePs) is a reweighting algorithm that reconciles\\nsimulated ensembles with ensemble-averaged experimental observations, even when\\nsuch observations are sparse and/or noisy. This is achieved by sampling the\\nposterior distribution of conformational populations under experimental\\nrestraints as well as sampling the posterior distribution of uncertainties due\\nto random and systematic error. In this study, we enhance the algorithm for the\\nrefinement of empirical forward model (FM) parameters. We introduce and\\nevaluate two novel methods for optimizing FM parameters. The first method\\ntreats FM parameters as nuisance parameters, integrating over them in the full\\nposterior distribution. The second method employs variational minimization of a\\nquantity called the BICePs score that reports the free energy of `turning on`\\nthe experimental restraints. This technique, coupled with improved likelihood\\nfunctions for handling experimental outliers, facilitates force field\\nvalidation and optimization, as illustrated in recent studies (Raddi et al.\\n2023, 2024). Using this approach, we refine parameters that modulate the\\nKarplus relation, crucial for accurate predictions of J-coupling constants\\nbased on dihedral angles between interacting nuclei. We validate this approach\\nfirst with a toy model system, and then for human ubiquitin, predicting six\\nsets of Karplus parameters. This approach, which does not rely on predetermined\\nparameters, enhances predictive accuracy and can be used for many applications.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.18532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这些模型是一种计算框架,根据将特定分子性质与实验测量结果联系起来的经验关系,从分子构型中生成可观测量。构象群贝叶斯推断(BICePs)是一种重新加权算法,可将模拟的集合与集合平均实验观测值进行调和,即使这些观测值稀少和/或存在噪声。这是通过对实验约束条件下构象群的后验分布以及随机误差和系统误差造成的不确定性的后验分布进行采样来实现的。在这项研究中,我们改进了用于确定经验前向模型(FM)参数的算法。我们引入并评估了两种优化前向模型参数的新方法。第一种方法将调频参数视为干扰参数,在全前沿分布中对其进行积分。第二种方法采用称为 BICePs 分数的含水量变异最小化,报告 "打开 "实验约束的自由能。正如最近的研究(Raddi et al.2023,2024)所示,这项技术与处理实验异常值的改进似然函数相结合,有助于力场验证和优化。利用这种方法,我们完善了调节卡尔加关系的参数,这对准确预测基于相互作用原子核之间二面角的 J 耦合常数至关重要。我们首先用一个玩具模型系统验证了这种方法,然后针对人类泛素,预测了六组 Karplus 参数。这种不依赖预定参数的方法提高了预测的准确性,可用于多种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Forward Model Parameterization with Bayesian Inference of Conformational Populations
To quantify how well theoretical predictions of structural ensembles agree with experimental measurements, we depend on the accuracy of forward models. These models are computational frameworks that generate observable quantities from molecular configurations based on empirical relationships linking specific molecular properties to experimental measurements. Bayesian Inference of Conformational Populations (BICePs) is a reweighting algorithm that reconciles simulated ensembles with ensemble-averaged experimental observations, even when such observations are sparse and/or noisy. This is achieved by sampling the posterior distribution of conformational populations under experimental restraints as well as sampling the posterior distribution of uncertainties due to random and systematic error. In this study, we enhance the algorithm for the refinement of empirical forward model (FM) parameters. We introduce and evaluate two novel methods for optimizing FM parameters. The first method treats FM parameters as nuisance parameters, integrating over them in the full posterior distribution. The second method employs variational minimization of a quantity called the BICePs score that reports the free energy of `turning on` the experimental restraints. This technique, coupled with improved likelihood functions for handling experimental outliers, facilitates force field validation and optimization, as illustrated in recent studies (Raddi et al. 2023, 2024). Using this approach, we refine parameters that modulate the Karplus relation, crucial for accurate predictions of J-coupling constants based on dihedral angles between interacting nuclei. We validate this approach first with a toy model system, and then for human ubiquitin, predicting six sets of Karplus parameters. This approach, which does not rely on predetermined parameters, enhances predictive accuracy and can be used for many applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1