用于开发经验公式的单元感知遗传编程

Julia Reuter, Viktor Martinek, Roland Herzog, Sanaz Mostaghim
{"title":"用于开发经验公式的单元感知遗传编程","authors":"Julia Reuter, Viktor Martinek, Roland Herzog, Sanaz Mostaghim","doi":"arxiv-2405.18896","DOIUrl":null,"url":null,"abstract":"When developing empirical equations, domain experts require these to be\naccurate and adhere to physical laws. Often, constants with unknown units need\nto be discovered alongside the equations. Traditional unit-aware genetic\nprogramming (GP) approaches cannot be used when unknown constants with\nundetermined units are included. This paper presents a method for dimensional\nanalysis that propagates unknown units as ''jokers'' and returns the magnitude\nof unit violations. We propose three methods, namely evolutive culling, a\nrepair mechanism, and a multi-objective approach, to integrate the dimensional\nanalysis in the GP algorithm. Experiments on datasets with ground truth\ndemonstrate comparable performance of evolutive culling and the multi-objective\napproach to a baseline without dimensional analysis. Extensive analysis of the\nresults on datasets without ground truth reveals that the unit-aware algorithms\nmake only low sacrifices in accuracy, while producing unit-adherent solutions.\nOverall, we presented a promising novel approach for developing unit-adherent\nempirical equations.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unit-Aware Genetic Programming for the Development of Empirical Equations\",\"authors\":\"Julia Reuter, Viktor Martinek, Roland Herzog, Sanaz Mostaghim\",\"doi\":\"arxiv-2405.18896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When developing empirical equations, domain experts require these to be\\naccurate and adhere to physical laws. Often, constants with unknown units need\\nto be discovered alongside the equations. Traditional unit-aware genetic\\nprogramming (GP) approaches cannot be used when unknown constants with\\nundetermined units are included. This paper presents a method for dimensional\\nanalysis that propagates unknown units as ''jokers'' and returns the magnitude\\nof unit violations. We propose three methods, namely evolutive culling, a\\nrepair mechanism, and a multi-objective approach, to integrate the dimensional\\nanalysis in the GP algorithm. Experiments on datasets with ground truth\\ndemonstrate comparable performance of evolutive culling and the multi-objective\\napproach to a baseline without dimensional analysis. Extensive analysis of the\\nresults on datasets without ground truth reveals that the unit-aware algorithms\\nmake only low sacrifices in accuracy, while producing unit-adherent solutions.\\nOverall, we presented a promising novel approach for developing unit-adherent\\nempirical equations.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.18896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在建立经验方程时,领域专家要求这些方程必须准确并符合物理规律。通常情况下,需要与方程一起发现未知单位的常数。当包含有确定单位的未知常数时,传统的单位感知遗传编程(GP)方法就无法使用了。本文提出了一种维度分析方法,将未知单位作为 "小丑 "进行传播,并返回违反单位的大小。我们提出了三种方法,即进化剔除、配对机制和多目标方法,将维度分析集成到 GP 算法中。在具有地面实况的数据集上进行的实验表明,进化剔除和多目标方法的性能与不进行维度分析的基线相当。对无地面实况数据集的结果进行的广泛分析表明,单元感知算法只牺牲了较低的准确性,同时产生了单元相干解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unit-Aware Genetic Programming for the Development of Empirical Equations
When developing empirical equations, domain experts require these to be accurate and adhere to physical laws. Often, constants with unknown units need to be discovered alongside the equations. Traditional unit-aware genetic programming (GP) approaches cannot be used when unknown constants with undetermined units are included. This paper presents a method for dimensional analysis that propagates unknown units as ''jokers'' and returns the magnitude of unit violations. We propose three methods, namely evolutive culling, a repair mechanism, and a multi-objective approach, to integrate the dimensional analysis in the GP algorithm. Experiments on datasets with ground truth demonstrate comparable performance of evolutive culling and the multi-objective approach to a baseline without dimensional analysis. Extensive analysis of the results on datasets without ground truth reveals that the unit-aware algorithms make only low sacrifices in accuracy, while producing unit-adherent solutions. Overall, we presented a promising novel approach for developing unit-adherent empirical equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1