吐温-GCN:用于基于方面的情感分析的吐温语法图卷积网络

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Knowledge and Information Systems Pub Date : 2024-05-30 DOI:10.1007/s10115-024-02135-1
Ying Hou, Fang’ai Liu, Xuqiang Zhuang, Yuling Zhang
{"title":"吐温-GCN:用于基于方面的情感分析的吐温语法图卷积网络","authors":"Ying Hou, Fang’ai Liu, Xuqiang Zhuang, Yuling Zhang","doi":"10.1007/s10115-024-02135-1","DOIUrl":null,"url":null,"abstract":"<p>The goal of aspect-based sentiment analysis is to recognize the aspect information in the text and the corresponding sentiment polarity. A variety of robust methods, including attention mechanisms and convolutional neural networks, have been extensively utilized to tackle this complex task. Better experimental results are obtained by using graph convolutional networks (GCN) based on semantic dependency trees in previous studies. Therefore, abundant methods begin to use sentence structure information to complete this task. However, only the loose connection between aspect words and contexts is realized in some practices due to sentences may contain complex relations. To solve this problem, Twain-Syntax graph convolutional network model is proposed, which can utilize multiple syntactic structure information simultaneously. Guided by the constituent tree and dependency tree, rich syntactic information is fully used in the model to build the sentiment-aware context for each aspect. In special, the multilayer attention mechanism and GCN are employed for learning to capture the correlation between words. By integrating syntactic information, this approach significantly refines the model’s technical performance. Extensive testing on four benchmark datasets shows that the model delineated in this paper exhibits high levels of efficiency, comparable to several cutting-edge models.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"30 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twain-GCN: twain-syntax graph convolutional networks for aspect-based sentiment analysis\",\"authors\":\"Ying Hou, Fang’ai Liu, Xuqiang Zhuang, Yuling Zhang\",\"doi\":\"10.1007/s10115-024-02135-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The goal of aspect-based sentiment analysis is to recognize the aspect information in the text and the corresponding sentiment polarity. A variety of robust methods, including attention mechanisms and convolutional neural networks, have been extensively utilized to tackle this complex task. Better experimental results are obtained by using graph convolutional networks (GCN) based on semantic dependency trees in previous studies. Therefore, abundant methods begin to use sentence structure information to complete this task. However, only the loose connection between aspect words and contexts is realized in some practices due to sentences may contain complex relations. To solve this problem, Twain-Syntax graph convolutional network model is proposed, which can utilize multiple syntactic structure information simultaneously. Guided by the constituent tree and dependency tree, rich syntactic information is fully used in the model to build the sentiment-aware context for each aspect. In special, the multilayer attention mechanism and GCN are employed for learning to capture the correlation between words. By integrating syntactic information, this approach significantly refines the model’s technical performance. Extensive testing on four benchmark datasets shows that the model delineated in this paper exhibits high levels of efficiency, comparable to several cutting-edge models.</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02135-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02135-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于方面的情感分析的目标是识别文本中的方面信息和相应的情感极性。为了完成这项复杂的任务,人们广泛采用了各种稳健的方法,包括注意力机制和卷积神经网络。在以往的研究中,基于语义依存树的图卷积网络(GCN)获得了较好的实验结果。因此,大量方法开始使用句子结构信息来完成这项任务。然而,由于句子可能包含复杂的关系,在某些实践中只能实现方面词和上下文之间的松散联系。为解决这一问题,本文提出了吐温-语法图卷积网络模型,该模型可同时利用多种句法结构信息。该模型以成分树和依赖树为指导,充分利用丰富的句法信息,为每个方面构建感知语境。特别是,多层注意机制和 GCN 被用于学习捕捉词与词之间的相关性。通过整合句法信息,这种方法大大提高了模型的技术性能。在四个基准数据集上进行的广泛测试表明,本文所描述的模型具有很高的效率,可与几种最先进的模型相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Twain-GCN: twain-syntax graph convolutional networks for aspect-based sentiment analysis

The goal of aspect-based sentiment analysis is to recognize the aspect information in the text and the corresponding sentiment polarity. A variety of robust methods, including attention mechanisms and convolutional neural networks, have been extensively utilized to tackle this complex task. Better experimental results are obtained by using graph convolutional networks (GCN) based on semantic dependency trees in previous studies. Therefore, abundant methods begin to use sentence structure information to complete this task. However, only the loose connection between aspect words and contexts is realized in some practices due to sentences may contain complex relations. To solve this problem, Twain-Syntax graph convolutional network model is proposed, which can utilize multiple syntactic structure information simultaneously. Guided by the constituent tree and dependency tree, rich syntactic information is fully used in the model to build the sentiment-aware context for each aspect. In special, the multilayer attention mechanism and GCN are employed for learning to capture the correlation between words. By integrating syntactic information, this approach significantly refines the model’s technical performance. Extensive testing on four benchmark datasets shows that the model delineated in this paper exhibits high levels of efficiency, comparable to several cutting-edge models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge and Information Systems
Knowledge and Information Systems 工程技术-计算机:人工智能
CiteScore
5.70
自引率
7.40%
发文量
152
审稿时长
7.2 months
期刊介绍: Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.
期刊最新文献
Dynamic evolution of causal relationships among cryptocurrencies: an analysis via Bayesian networks Deep multi-semantic fuzzy K-means with adaptive weight adjustment Class incremental named entity recognition without forgetting Spectral clustering with scale fairness constraints Supervised kernel-based multi-modal Bhattacharya distance learning for imbalanced data classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1