用于保护电气设备的氮化硼改性超疏水防冰涂层

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemNanoMat Pub Date : 2024-05-28 DOI:10.1002/cnma.202400001
Bo Wang, Prof. Xueqin Zhang, Bingkun Li, Yijie Liu, Song Xiao, Yujun Guo, Wenfu Wei, Guoqiang Gao, Guangning Wu
{"title":"用于保护电气设备的氮化硼改性超疏水防冰涂层","authors":"Bo Wang,&nbsp;Prof. Xueqin Zhang,&nbsp;Bingkun Li,&nbsp;Yijie Liu,&nbsp;Song Xiao,&nbsp;Yujun Guo,&nbsp;Wenfu Wei,&nbsp;Guoqiang Gao,&nbsp;Guangning Wu","doi":"10.1002/cnma.202400001","DOIUrl":null,"url":null,"abstract":"<p>Anti-icing of superhydrophobic materials has attracted a lot of attention. The potential for applications in power electronics, transportation, engineering and other fields is enormous. However, in practical applications, the anti-icing performance parameters of superhydrophobic materials are still far from meeting the engineering requirements. It is a feasible solution to modify superhydrophobic materials to assist surface deicing by combining the vibration and heat generated by equipment in actual engineering. In this study, conventional superhydrophobic materials are modified by h-BN. The electrical properties are improved to meet the engineering requirements. At the same time, it reduces the ice adhesion at the interface and improves the thermal conductivity of the material. The modified material has the possibility of assisting in de-icing in engineering applications. A feasible solution is found for the engineering interface ice-covering problem.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boron Nitride Modified Superhydrophobic Anti-Icing Coating for Electrical Equipment Protection\",\"authors\":\"Bo Wang,&nbsp;Prof. Xueqin Zhang,&nbsp;Bingkun Li,&nbsp;Yijie Liu,&nbsp;Song Xiao,&nbsp;Yujun Guo,&nbsp;Wenfu Wei,&nbsp;Guoqiang Gao,&nbsp;Guangning Wu\",\"doi\":\"10.1002/cnma.202400001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Anti-icing of superhydrophobic materials has attracted a lot of attention. The potential for applications in power electronics, transportation, engineering and other fields is enormous. However, in practical applications, the anti-icing performance parameters of superhydrophobic materials are still far from meeting the engineering requirements. It is a feasible solution to modify superhydrophobic materials to assist surface deicing by combining the vibration and heat generated by equipment in actual engineering. In this study, conventional superhydrophobic materials are modified by h-BN. The electrical properties are improved to meet the engineering requirements. At the same time, it reduces the ice adhesion at the interface and improves the thermal conductivity of the material. The modified material has the possibility of assisting in de-icing in engineering applications. A feasible solution is found for the engineering interface ice-covering problem.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"10 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400001\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400001","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超疏水材料的防结冰功能已引起广泛关注。其在电力电子、交通、工程等领域的应用潜力巨大。然而,在实际应用中,超疏水材料的防冰性能参数还远远不能满足工程要求。结合实际工程中设备产生的振动和热量,对超疏水材料进行改性以辅助表面除冰是一种可行的解决方案。本研究采用 h-BN 对传统超疏水材料进行改性。其电气性能得到改善,满足了工程要求。同时,它还减少了界面上的冰附着,提高了材料的导热性。改性后的材料有可能在工程应用中帮助除冰。为工程界面覆冰问题找到了可行的解决方案
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boron Nitride Modified Superhydrophobic Anti-Icing Coating for Electrical Equipment Protection

Anti-icing of superhydrophobic materials has attracted a lot of attention. The potential for applications in power electronics, transportation, engineering and other fields is enormous. However, in practical applications, the anti-icing performance parameters of superhydrophobic materials are still far from meeting the engineering requirements. It is a feasible solution to modify superhydrophobic materials to assist surface deicing by combining the vibration and heat generated by equipment in actual engineering. In this study, conventional superhydrophobic materials are modified by h-BN. The electrical properties are improved to meet the engineering requirements. At the same time, it reduces the ice adhesion at the interface and improves the thermal conductivity of the material. The modified material has the possibility of assisting in de-icing in engineering applications. A feasible solution is found for the engineering interface ice-covering problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
期刊最新文献
Front Cover: Single Source Precursor Path to 2D Materials: A Case Study of Solution-Processed Molybdenum-Rich MoSe2-x Ultrathin Nanosheets (ChemNanoMat 11/2024) Construction of PtAg-on-Au Heterostructured Nanoplates for Improved Electrocatalytic Activity of Formic Acid Oxidation New Ceramic Material Y2-xVxO3+x – Mechanochemical Synthesis and Some Physicochemical Properties Expression of Concern: Affinity of Glycan-Modified Nanodiamonds towards Lectins and Uropathogenic Escherichia Coli Front Cover: Tailoring Energy Structure of Low-Toxic Ternary Ag−Bi−S Quantum Dots through Solution-Phase Synthesis for Quantum-Dot-Sensitized Solar Cells (ChemNanoMat 10/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1