{"title":"铜对镁/钛/铜复合材料物理、机械和热性能的结合效应","authors":"Naveen Kumar, Ajaya Bharti, Yogesh Chandra","doi":"10.1007/s11106-024-00420-w","DOIUrl":null,"url":null,"abstract":"<p>Metallic reinforcing titanium is added to the magnesium matrix to improve the mechanical properties without losing ductility. Titanium has negligible solid solubility in magnesium below 500°C therefore it does not form a tertiary hard phase with Mg. Therefore, when titanium is added to magnesium, both strength and ductility are improved. However, due to the low solid solubility of Ti in Mg, the bonding between matrix and reinforcement is poor. Therefore, a small amount of metallic reinforcement Cu is added to fabricate Mg/Ti/Cu hybrid composites by powder metallurgy technique to enhance the bonding between Mg and Ti. Cu is selected as a binding agent because it has significant solid solubility with Ti and Mg. In the present work, the effect of Cu on the physical, mechanical, and thermal properties of Mg/Ti/Cu composites has been investigated. The addition of Cu was found to decrease the strength, hardness, and wear rate. On the other hand, the thermal conductivity increased. The strength, wear resistance and thermal stability of the prepared Mg- based hybrid composites are sufficient enough to replace some components of cast iron and aluminum in automotive special seat frames, door panels, brake disks of light-duty vehicles, etc. Thus, the prepared material is recommended for use in automotive and other industries.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 9-10","pages":"597 - 610"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binding Effect of Copper on Physical, Mechanical, and Thermal Properties of Mg/Ti/Cu Composites\",\"authors\":\"Naveen Kumar, Ajaya Bharti, Yogesh Chandra\",\"doi\":\"10.1007/s11106-024-00420-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Metallic reinforcing titanium is added to the magnesium matrix to improve the mechanical properties without losing ductility. Titanium has negligible solid solubility in magnesium below 500°C therefore it does not form a tertiary hard phase with Mg. Therefore, when titanium is added to magnesium, both strength and ductility are improved. However, due to the low solid solubility of Ti in Mg, the bonding between matrix and reinforcement is poor. Therefore, a small amount of metallic reinforcement Cu is added to fabricate Mg/Ti/Cu hybrid composites by powder metallurgy technique to enhance the bonding between Mg and Ti. Cu is selected as a binding agent because it has significant solid solubility with Ti and Mg. In the present work, the effect of Cu on the physical, mechanical, and thermal properties of Mg/Ti/Cu composites has been investigated. The addition of Cu was found to decrease the strength, hardness, and wear rate. On the other hand, the thermal conductivity increased. The strength, wear resistance and thermal stability of the prepared Mg- based hybrid composites are sufficient enough to replace some components of cast iron and aluminum in automotive special seat frames, door panels, brake disks of light-duty vehicles, etc. Thus, the prepared material is recommended for use in automotive and other industries.</p>\",\"PeriodicalId\":742,\"journal\":{\"name\":\"Powder Metallurgy and Metal Ceramics\",\"volume\":\"62 9-10\",\"pages\":\"597 - 610\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy and Metal Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11106-024-00420-w\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-024-00420-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
在镁基体中加入金属强化钛,可在不损失延展性的情况下改善机械性能。在 500°C 以下,钛在镁中的固体溶解度可忽略不计,因此它不会与镁形成三级硬相。因此,在镁中加入钛后,强度和延展性都会得到改善。然而,由于钛在镁中的固体溶解度较低,基体和增强材料之间的结合较差。因此,在采用粉末冶金技术制造镁/钛/铜混合复合材料时,加入了少量金属增强剂 Cu,以增强镁和钛之间的结合力。之所以选择 Cu 作为结合剂,是因为它与 Ti 和 Mg 具有显著的固溶性。本研究调查了铜对 Mg/Ti/Cu 复合材料的物理、机械和热性能的影响。研究发现,添加铜会降低强度、硬度和磨损率。另一方面,热导率却增加了。所制备的镁基混合复合材料的强度、耐磨性和热稳定性足以取代汽车专用座椅框架、门板、轻型汽车制动盘等中的一些铸铁和铝部件。因此,建议将制备的材料用于汽车和其他行业。
Binding Effect of Copper on Physical, Mechanical, and Thermal Properties of Mg/Ti/Cu Composites
Metallic reinforcing titanium is added to the magnesium matrix to improve the mechanical properties without losing ductility. Titanium has negligible solid solubility in magnesium below 500°C therefore it does not form a tertiary hard phase with Mg. Therefore, when titanium is added to magnesium, both strength and ductility are improved. However, due to the low solid solubility of Ti in Mg, the bonding between matrix and reinforcement is poor. Therefore, a small amount of metallic reinforcement Cu is added to fabricate Mg/Ti/Cu hybrid composites by powder metallurgy technique to enhance the bonding between Mg and Ti. Cu is selected as a binding agent because it has significant solid solubility with Ti and Mg. In the present work, the effect of Cu on the physical, mechanical, and thermal properties of Mg/Ti/Cu composites has been investigated. The addition of Cu was found to decrease the strength, hardness, and wear rate. On the other hand, the thermal conductivity increased. The strength, wear resistance and thermal stability of the prepared Mg- based hybrid composites are sufficient enough to replace some components of cast iron and aluminum in automotive special seat frames, door panels, brake disks of light-duty vehicles, etc. Thus, the prepared material is recommended for use in automotive and other industries.
期刊介绍:
Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.