{"title":"青藏工程走廊堤坝时空热影响范围数值分析","authors":"Jianjian He , Shuang Shu , Yubing Wang","doi":"10.1016/j.coldregions.2024.104244","DOIUrl":null,"url":null,"abstract":"<div><p>The density of linear engineering projects within the Qinghai-Tibet Engineering Corridor has increased, and the study of the thermal influence range of a single linear engineering project has become more important. This paper employs the finite difference method to investigate the influence of embankment size, mean annual ground temperature (MAGT), and construction time on the spatial-temporal evolution of the embankment's lateral and vertical thermal influence range. Additionally, a parameter sensitivity analysis of the lateral and vertical thermal influence ranges throughout the entire service life of the embankment is conducted. The results indicate that under the same service time, the lateral-vertical ratio (<em>L</em><sub>c</sub>/<em>D</em>), as well as the lateral thermal influence range (<em>L</em><sub>c</sub>) and the vertical thermal influence range (<em>D</em>), increase linearly with increasing embankment height and pavement width. The <em>L</em><sub>c</sub>/<em>D</em> increases with increasing MAGT, but the <em>L</em><sub>c</sub> and <em>D</em> decrease with increasing MAGT. The <em>L</em><sub>c</sub>/<em>D</em>, the <em>L</em><sub>c</sub>, and the <em>D</em> are not significantly affected by construction time. During the 50-year service life of the embankment, the most significant factor impacting the <em>L</em><sub>c</sub> is the pavement width, and the MAGT is the most significant factor impacting the <em>D</em>. The results are expected to serve as a guide for the design and construction of roads in the permafrost regions of the Qinghai-Tibet Plateau.</p></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"224 ","pages":"Article 104244"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analyses on the spatial-temporal thermal influence range of embankment in the Qinghai-Tibet Engineering Corridor\",\"authors\":\"Jianjian He , Shuang Shu , Yubing Wang\",\"doi\":\"10.1016/j.coldregions.2024.104244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The density of linear engineering projects within the Qinghai-Tibet Engineering Corridor has increased, and the study of the thermal influence range of a single linear engineering project has become more important. This paper employs the finite difference method to investigate the influence of embankment size, mean annual ground temperature (MAGT), and construction time on the spatial-temporal evolution of the embankment's lateral and vertical thermal influence range. Additionally, a parameter sensitivity analysis of the lateral and vertical thermal influence ranges throughout the entire service life of the embankment is conducted. The results indicate that under the same service time, the lateral-vertical ratio (<em>L</em><sub>c</sub>/<em>D</em>), as well as the lateral thermal influence range (<em>L</em><sub>c</sub>) and the vertical thermal influence range (<em>D</em>), increase linearly with increasing embankment height and pavement width. The <em>L</em><sub>c</sub>/<em>D</em> increases with increasing MAGT, but the <em>L</em><sub>c</sub> and <em>D</em> decrease with increasing MAGT. The <em>L</em><sub>c</sub>/<em>D</em>, the <em>L</em><sub>c</sub>, and the <em>D</em> are not significantly affected by construction time. During the 50-year service life of the embankment, the most significant factor impacting the <em>L</em><sub>c</sub> is the pavement width, and the MAGT is the most significant factor impacting the <em>D</em>. The results are expected to serve as a guide for the design and construction of roads in the permafrost regions of the Qinghai-Tibet Plateau.</p></div>\",\"PeriodicalId\":10522,\"journal\":{\"name\":\"Cold Regions Science and Technology\",\"volume\":\"224 \",\"pages\":\"Article 104244\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Regions Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165232X24001253\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24001253","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Numerical analyses on the spatial-temporal thermal influence range of embankment in the Qinghai-Tibet Engineering Corridor
The density of linear engineering projects within the Qinghai-Tibet Engineering Corridor has increased, and the study of the thermal influence range of a single linear engineering project has become more important. This paper employs the finite difference method to investigate the influence of embankment size, mean annual ground temperature (MAGT), and construction time on the spatial-temporal evolution of the embankment's lateral and vertical thermal influence range. Additionally, a parameter sensitivity analysis of the lateral and vertical thermal influence ranges throughout the entire service life of the embankment is conducted. The results indicate that under the same service time, the lateral-vertical ratio (Lc/D), as well as the lateral thermal influence range (Lc) and the vertical thermal influence range (D), increase linearly with increasing embankment height and pavement width. The Lc/D increases with increasing MAGT, but the Lc and D decrease with increasing MAGT. The Lc/D, the Lc, and the D are not significantly affected by construction time. During the 50-year service life of the embankment, the most significant factor impacting the Lc is the pavement width, and the MAGT is the most significant factor impacting the D. The results are expected to serve as a guide for the design and construction of roads in the permafrost regions of the Qinghai-Tibet Plateau.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.