利用 AIS 数据压缩船舶轨迹的在线方法

Zhao Liu, Wensen Yuan, Maohan Liang, Mingyang Zhang, Cong Liu, Ryan Wen Liu, Jingxian Liu
{"title":"利用 AIS 数据压缩船舶轨迹的在线方法","authors":"Zhao Liu, Wensen Yuan, Maohan Liang, Mingyang Zhang, Cong Liu, Ryan Wen Liu, Jingxian Liu","doi":"10.1017/s0373463324000171","DOIUrl":null,"url":null,"abstract":"Vessel trajectories from the Automatic Identification System (AIS) play an important role in maritime traffic management, but a drawback is the huge amount of memory occupation which thus results in a low speed of data acquisition in maritime applications due to a large number of scattered data. This paper proposes a novel online vessel trajectory compression method based on the Improved Open Window (IOPW) algorithm. The proposed method compresses vessel trajectory instantly according to vessel coordinates along with a timestamp driven by the AIS data. In particular, we adopt the weighted Euclidean distance (WED), fusing the perpendicular Euclidean distance (PED) and synchronous Euclidean distance (SED) in IOPW to improve the robustness. The realistic AIS-based vessel trajectories are used to illustrate the proposed model by comparing it with five traditional trajectory compression methods. The experimental results reveal that the proposed method could effectively maintain the important trajectory features and significantly reduce the rate of distance loss during the online compression of vessel trajectories.","PeriodicalId":501254,"journal":{"name":"The Journal of Navigation","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An online method for ship trajectory compression using AIS data\",\"authors\":\"Zhao Liu, Wensen Yuan, Maohan Liang, Mingyang Zhang, Cong Liu, Ryan Wen Liu, Jingxian Liu\",\"doi\":\"10.1017/s0373463324000171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vessel trajectories from the Automatic Identification System (AIS) play an important role in maritime traffic management, but a drawback is the huge amount of memory occupation which thus results in a low speed of data acquisition in maritime applications due to a large number of scattered data. This paper proposes a novel online vessel trajectory compression method based on the Improved Open Window (IOPW) algorithm. The proposed method compresses vessel trajectory instantly according to vessel coordinates along with a timestamp driven by the AIS data. In particular, we adopt the weighted Euclidean distance (WED), fusing the perpendicular Euclidean distance (PED) and synchronous Euclidean distance (SED) in IOPW to improve the robustness. The realistic AIS-based vessel trajectories are used to illustrate the proposed model by comparing it with five traditional trajectory compression methods. The experimental results reveal that the proposed method could effectively maintain the important trajectory features and significantly reduce the rate of distance loss during the online compression of vessel trajectories.\",\"PeriodicalId\":501254,\"journal\":{\"name\":\"The Journal of Navigation\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0373463324000171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0373463324000171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

来自自动识别系统(AIS)的船舶轨迹在海上交通管理中发挥着重要作用,但其缺点是占用大量内存,因此在海上应用中由于大量数据分散而导致数据采集速度较低。本文提出了一种基于改进开窗算法(IOPW)的新型在线船舶轨迹压缩方法。该方法根据 AIS 数据驱动的船舶坐标和时间戳即时压缩船舶轨迹。特别是,我们采用了加权欧氏距离(WED),融合了 IOPW 中的垂直欧氏距离(PED)和同步欧氏距离(SED),以提高鲁棒性。通过与五种传统轨迹压缩方法的比较,使用基于 AIS 的真实船只轨迹来说明所提出的模型。实验结果表明,所提出的方法可以有效地保持重要的轨迹特征,并显著降低在线压缩船只轨迹过程中的距离损失率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An online method for ship trajectory compression using AIS data
Vessel trajectories from the Automatic Identification System (AIS) play an important role in maritime traffic management, but a drawback is the huge amount of memory occupation which thus results in a low speed of data acquisition in maritime applications due to a large number of scattered data. This paper proposes a novel online vessel trajectory compression method based on the Improved Open Window (IOPW) algorithm. The proposed method compresses vessel trajectory instantly according to vessel coordinates along with a timestamp driven by the AIS data. In particular, we adopt the weighted Euclidean distance (WED), fusing the perpendicular Euclidean distance (PED) and synchronous Euclidean distance (SED) in IOPW to improve the robustness. The realistic AIS-based vessel trajectories are used to illustrate the proposed model by comparing it with five traditional trajectory compression methods. The experimental results reveal that the proposed method could effectively maintain the important trajectory features and significantly reduce the rate of distance loss during the online compression of vessel trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal design via polynomial Euler function for UAV applications A critical examination of safety culture in the superyacht industry Deep temporal semi-supervised one-class classification for GNSS radio frequency interference detection An online method for ship trajectory compression using AIS data Exploration of the state-of-the-art of maritime transport safety research: a bibliometric and visualised analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1