利用多孔氧化铝中间膜缓解室内过氧化物光伏组件中的寄生漏电流

IF 10.7 Q1 CHEMISTRY, PHYSICAL EcoMat Pub Date : 2024-05-29 DOI:10.1002/eom2.12455
Gyeong G. Jeon, Da Seul Lee, Min Jun Choi, You-Hyun Seo, Shujuan Huang, Jong H. Kim, Seong Sik Shin, Jincheol Kim
{"title":"利用多孔氧化铝中间膜缓解室内过氧化物光伏组件中的寄生漏电流","authors":"Gyeong G. Jeon,&nbsp;Da Seul Lee,&nbsp;Min Jun Choi,&nbsp;You-Hyun Seo,&nbsp;Shujuan Huang,&nbsp;Jong H. Kim,&nbsp;Seong Sik Shin,&nbsp;Jincheol Kim","doi":"10.1002/eom2.12455","DOIUrl":null,"url":null,"abstract":"<p>Indoor photovoltaics are limited by their inherently low-photogenerated carrier density, leading to heightened carrier recombination and adverse leakage currents compared with conventional solar cells operating under 1 sun condition. To address these problems, this work incorporates a porous insulating interlayer (Al<sub>2</sub>O<sub>3</sub>) in perovskite devices, which effectively mitigates recombination and parasitic leakage current. A systematic investigation of the relationship between shunt resistance, photocarrier generation, and recombination at different light intensities demonstrates the effectiveness of the alumina interlayer in perovskite solar cells under low-light conditions. Moreover, the practicability of the alumina interlayer was demonstrated through its successful implementation in a large-area perovskite solar module (PSM). With bandgap engineering, the optimized PSM achieves a remarkable power conversion efficiency of 33.5% and a record-breaking power density of 107.3 μW cm<sup>−2</sup> under 1000 lux illumination. These results underscore the potential of alumina interlayers in improving energy harvesting performance, particularly in low-light indoor environments.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12455","citationCount":"0","resultStr":"{\"title\":\"Mitigation of parasitic leakage current in indoor perovskite photovoltaic modules using porous alumina interlayer\",\"authors\":\"Gyeong G. Jeon,&nbsp;Da Seul Lee,&nbsp;Min Jun Choi,&nbsp;You-Hyun Seo,&nbsp;Shujuan Huang,&nbsp;Jong H. Kim,&nbsp;Seong Sik Shin,&nbsp;Jincheol Kim\",\"doi\":\"10.1002/eom2.12455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Indoor photovoltaics are limited by their inherently low-photogenerated carrier density, leading to heightened carrier recombination and adverse leakage currents compared with conventional solar cells operating under 1 sun condition. To address these problems, this work incorporates a porous insulating interlayer (Al<sub>2</sub>O<sub>3</sub>) in perovskite devices, which effectively mitigates recombination and parasitic leakage current. A systematic investigation of the relationship between shunt resistance, photocarrier generation, and recombination at different light intensities demonstrates the effectiveness of the alumina interlayer in perovskite solar cells under low-light conditions. Moreover, the practicability of the alumina interlayer was demonstrated through its successful implementation in a large-area perovskite solar module (PSM). With bandgap engineering, the optimized PSM achieves a remarkable power conversion efficiency of 33.5% and a record-breaking power density of 107.3 μW cm<sup>−2</sup> under 1000 lux illumination. These results underscore the potential of alumina interlayers in improving energy harvesting performance, particularly in low-light indoor environments.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12455\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

室内光伏技术因其固有的低光生载流子密度而受到限制,与在日照条件下工作的传统太阳能电池相比,室内光伏技术会导致载流子高度重组和不利的漏电流。为了解决这些问题,这项研究在过氧化物设备中加入了多孔绝缘中间层(Al2O3),从而有效地缓解了载流子重组和寄生漏电流。对不同光照强度下并联电阻、光载流子生成和重组之间关系的系统研究表明,氧化铝中间膜在低光照条件下的包晶体太阳能电池中非常有效。此外,氧化铝中间膜在大面积透辉石太阳能模块(PSM)中的成功应用也证明了它的实用性。通过带隙工程,优化后的 PSM 在 1000 勒克斯照明条件下实现了 33.5% 的出色功率转换效率和 107.3 μW cm-2 的破纪录功率密度。这些结果凸显了氧化铝夹层在提高能量收集性能方面的潜力,尤其是在室内弱光环境下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigation of parasitic leakage current in indoor perovskite photovoltaic modules using porous alumina interlayer

Indoor photovoltaics are limited by their inherently low-photogenerated carrier density, leading to heightened carrier recombination and adverse leakage currents compared with conventional solar cells operating under 1 sun condition. To address these problems, this work incorporates a porous insulating interlayer (Al2O3) in perovskite devices, which effectively mitigates recombination and parasitic leakage current. A systematic investigation of the relationship between shunt resistance, photocarrier generation, and recombination at different light intensities demonstrates the effectiveness of the alumina interlayer in perovskite solar cells under low-light conditions. Moreover, the practicability of the alumina interlayer was demonstrated through its successful implementation in a large-area perovskite solar module (PSM). With bandgap engineering, the optimized PSM achieves a remarkable power conversion efficiency of 33.5% and a record-breaking power density of 107.3 μW cm−2 under 1000 lux illumination. These results underscore the potential of alumina interlayers in improving energy harvesting performance, particularly in low-light indoor environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Cover Image Issue Information PTAA-infiltrated thin-walled carbon nanotube electrode with hidden encapsulation for perovskite solar cells Halogen-free solvent processed organic solar sub-modules (≈55 cm2) with 14.70% efficiency by controlling the morphology of alkyl chain engineered polymer donor Minimizing voltage losses in Sn perovskite solar cells by Cs2SnI6 passivation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1