2,4-二硝基苯甲醚中低能β-α第二类相变的动力学和机理

IF 5 Q1 ENGINEERING, MULTIDISCIPLINARY Defence Technology(防务技术) Pub Date : 2024-10-01 DOI:10.1016/j.dt.2024.04.004
{"title":"2,4-二硝基苯甲醚中低能β-α第二类相变的动力学和机理","authors":"","doi":"10.1016/j.dt.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, comprehensive studies of 2,4-dinitroanisole (2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→α in 2,4DNAN under various combinations of conditions has been determined. It has been established that, regardless of the season of manufacture of the substance, when it is stored for 8–9 months, with a change in ambient temperature from minus 30 °C to plus 30 °C, a complete polymorphic transition β→α occurs. When stored in conditions below minus 5 °C, polymorphic transition does not occur. When stored in conditions above plus 30 °C in a closed container, polymorphic transition occurs within 3 weeks. The polymorphic transition is accompanied by a decrease in density by 1.3%–1.5% and an increase in melting temperature by 10–12 °C, depending on the degree of purity of the starting substance. The activation energy of the molecular rearrangement was 68–70 kJ/mol (16.5 ± 3 kcal/mol). The mechanism of polymorphic transition has been evaluated, which is presumably based on internal homodiffusion and energy transfer to the surface of the mass of powder particles and the product. The average activation energy of the polymorphic transition process was 110 ± 6.2 kJ/mol (26.2 kcal/mol). In an open container, reactions proceed by a homogeneous mechanism, and in a closed container by a heterogeneous mechanism involving the gas phase.</div></div>","PeriodicalId":58209,"journal":{"name":"Defence Technology(防务技术)","volume":"40 ","pages":"Pages 210-224"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics and mechanism of the low-energy β-α phase transition of the second kind in 2,4-dinitroanisole\",\"authors\":\"\",\"doi\":\"10.1016/j.dt.2024.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, comprehensive studies of 2,4-dinitroanisole (2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→α in 2,4DNAN under various combinations of conditions has been determined. It has been established that, regardless of the season of manufacture of the substance, when it is stored for 8–9 months, with a change in ambient temperature from minus 30 °C to plus 30 °C, a complete polymorphic transition β→α occurs. When stored in conditions below minus 5 °C, polymorphic transition does not occur. When stored in conditions above plus 30 °C in a closed container, polymorphic transition occurs within 3 weeks. The polymorphic transition is accompanied by a decrease in density by 1.3%–1.5% and an increase in melting temperature by 10–12 °C, depending on the degree of purity of the starting substance. The activation energy of the molecular rearrangement was 68–70 kJ/mol (16.5 ± 3 kcal/mol). The mechanism of polymorphic transition has been evaluated, which is presumably based on internal homodiffusion and energy transfer to the surface of the mass of powder particles and the product. The average activation energy of the polymorphic transition process was 110 ± 6.2 kJ/mol (26.2 kcal/mol). In an open container, reactions proceed by a homogeneous mechanism, and in a closed container by a heterogeneous mechanism involving the gas phase.</div></div>\",\"PeriodicalId\":58209,\"journal\":{\"name\":\"Defence Technology(防务技术)\",\"volume\":\"40 \",\"pages\":\"Pages 210-224\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Technology(防务技术)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214914724000813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Technology(防务技术)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214914724000813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用内标粉末热成像仪对 2,4-二硝基苯甲醚(2,4DNAN)进行了全面研究。测定了在不同条件组合下,2,4-二硝基苯甲醚固相β→α完全多态转变的时间。结果表明,无论该物质的生产季节如何,在环境温度从零下 30 °C升至零上 30 °C、贮存 8-9 个月后,都会发生完全的多态转变 β→α。在低于零下 5 °C 的条件下储存时,不会发生多态转变。如果在高于正 30 °C 的条件下储存在密闭容器中,多态转变会在 3 周内发生。多态转变伴随着密度下降 1.3%-1.5%,熔化温度升高 10-12 °C,具体取决于起始物质的纯度。分子重排的活化能为 68-70 kJ/mol(16.5 ± 3 kcal/mol)。对多晶型转变的机理进行了评估,推测其机理是基于粉末颗粒和产物表面的内部同扩散和能量转移。多态转变过程的平均活化能为 110 ± 6.2 kJ/mol(26.2 kcal/mol)。在开放容器中,反应以均相机制进行,而在封闭容器中,反应以涉及气相的异相机制进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinetics and mechanism of the low-energy β-α phase transition of the second kind in 2,4-dinitroanisole
In this work, comprehensive studies of 2,4-dinitroanisole (2,4DNAN) were carried out using powder thermorentgenography of the internal standard. The time of the complete polymorphic transition in the solid phase β→α in 2,4DNAN under various combinations of conditions has been determined. It has been established that, regardless of the season of manufacture of the substance, when it is stored for 8–9 months, with a change in ambient temperature from minus 30 °C to plus 30 °C, a complete polymorphic transition β→α occurs. When stored in conditions below minus 5 °C, polymorphic transition does not occur. When stored in conditions above plus 30 °C in a closed container, polymorphic transition occurs within 3 weeks. The polymorphic transition is accompanied by a decrease in density by 1.3%–1.5% and an increase in melting temperature by 10–12 °C, depending on the degree of purity of the starting substance. The activation energy of the molecular rearrangement was 68–70 kJ/mol (16.5 ± 3 kcal/mol). The mechanism of polymorphic transition has been evaluated, which is presumably based on internal homodiffusion and energy transfer to the surface of the mass of powder particles and the product. The average activation energy of the polymorphic transition process was 110 ± 6.2 kJ/mol (26.2 kcal/mol). In an open container, reactions proceed by a homogeneous mechanism, and in a closed container by a heterogeneous mechanism involving the gas phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Defence Technology(防务技术)
Defence Technology(防务技术) Mechanical Engineering, Control and Systems Engineering, Industrial and Manufacturing Engineering
CiteScore
8.70
自引率
0.00%
发文量
728
审稿时长
25 days
期刊介绍: Defence Technology, a peer reviewed journal, is published monthly and aims to become the best international academic exchange platform for the research related to defence technology. It publishes original research papers having direct bearing on defence, with a balanced coverage on analytical, experimental, numerical simulation and applied investigations. It covers various disciplines of science, technology and engineering.
期刊最新文献
IFC - Editorial Board Analysis model for damage of reinforced bars in RC beams under contact explosion Modelling of internal ballistics of gun systems: A review A tensile wearable SHF antenna with efficient communication in defense beacon technology An isogeometric analysis approach for dynamic response of doubly-curved magneto electro elastic composite shallow shell subjected to blast loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1