金属有机框架衍生多孔碳上的尖晶石镍铁氧体作为增强型流动电容式去离子的坚固法拉第电极

IF 8.9 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Environmental Science & Technology Letters Environ. Pub Date : 2024-05-31 DOI:10.1021/acs.estlett.4c00374
Biswajit Mishra, Swayamprakash Biswal and Bijay P. Tripathi*, 
{"title":"金属有机框架衍生多孔碳上的尖晶石镍铁氧体作为增强型流动电容式去离子的坚固法拉第电极","authors":"Biswajit Mishra,&nbsp;Swayamprakash Biswal and Bijay P. Tripathi*,&nbsp;","doi":"10.1021/acs.estlett.4c00374","DOIUrl":null,"url":null,"abstract":"<p >Water desalination by capacitive deionization techniques has often suffered from the relegating performance of carbon-based non-Faradaic electrode materials. To overcome the rate-limiting charge transfer kinetics and weak ion adsorption tendency, a metal–organic framework (MOF)-derived hybrid electrode with an exceptional flow capacitive deionization performance is reported here. Using MIL-88(FeNi) as a sacrificial template, we synthesized a porous graphitic framework decorated with nanosized spinel NiFe<sub>2</sub>O<sub>4</sub> (NiFe<sub>2</sub>O<sub>4</sub>@PC-500) electrodes, maintaining a parent rod-shaped morphology with a large surface area of 1227 m<sup>2</sup>/g. The synergistic interaction of NiFe<sub>2</sub>O<sub>4</sub> nanoparticles with the mesoporous graphitic framework exhibited remarkable desalination performance with a salt adsorption capacity of ∼34 mg/g and ∼89% salt removal at 1.2 V, surpassing those of traditional carbon-based electrodes. Moreover, NiFe<sub>2</sub>O<sub>4</sub>@PC-500 maintained its desalination capacity and structural integrity over prolonged desalination cycles with a specific capacitance of ∼206 F/g and capacitive retention over 500 cycles. This study presents a universal approach for strategically implementing MOF-derived heterostructures as potent flow electrode materials.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spinel Nickel Ferrite on Metal–Organic Framework-Derived Porous Carbon as a Robust Faradaic Electrode for Enhanced Flow Capacitive Deionization\",\"authors\":\"Biswajit Mishra,&nbsp;Swayamprakash Biswal and Bijay P. Tripathi*,&nbsp;\",\"doi\":\"10.1021/acs.estlett.4c00374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Water desalination by capacitive deionization techniques has often suffered from the relegating performance of carbon-based non-Faradaic electrode materials. To overcome the rate-limiting charge transfer kinetics and weak ion adsorption tendency, a metal–organic framework (MOF)-derived hybrid electrode with an exceptional flow capacitive deionization performance is reported here. Using MIL-88(FeNi) as a sacrificial template, we synthesized a porous graphitic framework decorated with nanosized spinel NiFe<sub>2</sub>O<sub>4</sub> (NiFe<sub>2</sub>O<sub>4</sub>@PC-500) electrodes, maintaining a parent rod-shaped morphology with a large surface area of 1227 m<sup>2</sup>/g. The synergistic interaction of NiFe<sub>2</sub>O<sub>4</sub> nanoparticles with the mesoporous graphitic framework exhibited remarkable desalination performance with a salt adsorption capacity of ∼34 mg/g and ∼89% salt removal at 1.2 V, surpassing those of traditional carbon-based electrodes. Moreover, NiFe<sub>2</sub>O<sub>4</sub>@PC-500 maintained its desalination capacity and structural integrity over prolonged desalination cycles with a specific capacitance of ∼206 F/g and capacitive retention over 500 cycles. This study presents a universal approach for strategically implementing MOF-derived heterostructures as potent flow electrode materials.</p>\",\"PeriodicalId\":37,\"journal\":{\"name\":\"Environmental Science & Technology Letters Environ.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science & Technology Letters Environ.\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00374\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00374","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

采用电容式去离子技术进行海水淡化常常受到碳基非法拉第电极材料性能低下的影响。为了克服电荷转移动力学的速率限制和弱离子吸附倾向,本文报道了一种由金属有机框架(MOF)衍生的具有优异流动电容去离子性能的混合电极。我们以 MIL-88(FeNi)为牺牲模板,合成了一种用纳米级尖晶石 NiFe2O4(NiFe2O4@PC-500)装饰的多孔石墨框架电极,保持了母体棒状形态,具有 1227 m2/g 的大表面积。NiFe2O4 纳米粒子与介孔石墨框架的协同作用表现出显著的海水淡化性能,在 1.2 V 的电压下,其盐吸附容量为 ∼34 mg/g,盐去除率为 ∼89% ,超过了传统的碳基电极。此外,NiFe2O4@PC-500 还能在长时间的海水淡化循环中保持其海水淡化能力和结构完整性,比电容为 ∼206 F/g,电容保持时间超过 500 个循环。本研究提出了一种通用方法,可用于战略性地将 MOF 衍生异质结构用作强效流动电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spinel Nickel Ferrite on Metal–Organic Framework-Derived Porous Carbon as a Robust Faradaic Electrode for Enhanced Flow Capacitive Deionization

Water desalination by capacitive deionization techniques has often suffered from the relegating performance of carbon-based non-Faradaic electrode materials. To overcome the rate-limiting charge transfer kinetics and weak ion adsorption tendency, a metal–organic framework (MOF)-derived hybrid electrode with an exceptional flow capacitive deionization performance is reported here. Using MIL-88(FeNi) as a sacrificial template, we synthesized a porous graphitic framework decorated with nanosized spinel NiFe2O4 (NiFe2O4@PC-500) electrodes, maintaining a parent rod-shaped morphology with a large surface area of 1227 m2/g. The synergistic interaction of NiFe2O4 nanoparticles with the mesoporous graphitic framework exhibited remarkable desalination performance with a salt adsorption capacity of ∼34 mg/g and ∼89% salt removal at 1.2 V, surpassing those of traditional carbon-based electrodes. Moreover, NiFe2O4@PC-500 maintained its desalination capacity and structural integrity over prolonged desalination cycles with a specific capacitance of ∼206 F/g and capacitive retention over 500 cycles. This study presents a universal approach for strategically implementing MOF-derived heterostructures as potent flow electrode materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Spinel Nickel Ferrite on Metal–Organic Framework-Derived Porous Carbon as a Robust Faradaic Electrode for Enhanced Flow Capacitive Deionization Hospital Effluent as a New Source of Anthropogenic Lanthanum in the Environment Quaternary Ammonium Compounds in Paired Human Urine and Feces: Relative Significance of Biliary Elimination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1