Žiga Fišer, Hana Whitehorn, Tia Furness, Peter Trontelj, Meredith Protas
{"title":"Asellus aquaticus物种群洞穴种群色素脱失重复进化中的遗传偏差。","authors":"Žiga Fišer, Hana Whitehorn, Tia Furness, Peter Trontelj, Meredith Protas","doi":"10.1002/jez.b.23256","DOIUrl":null,"url":null,"abstract":"<p>Similar phenotypes can evolve repeatedly under the same evolutionary pressures. A compelling example is the evolution of pigment loss and eye loss in cave-dwelling animals. While specific genomic regions or genes associated with these phenotypes have been identified in model species, it remains uncertain whether a bias towards particular genetic mechanisms exists. An isopod crustacean, <i>Asellus aquaticus</i>, is an ideal model organism to investigate this phenomenon. It inhabits surface freshwaters throughout Europe but has colonized groundwater on multiple independent occasions and evolved several cave populations with distinct ecomorphology. Previous studies have demonstrated that three different cave populations utilized common genetic regions, potentially the same genes, in the evolution of pigment and eye loss. Expanding on this, we conducted analysis on two additional cave populations, distinct either phylogenetically or biogeographically from those previously examined. We generated F2 hybrids from cave × surface crosses and tested phenotype-genotype associations, as well as conducted complementation tests by crossing individuals from different cave populations. Our findings revealed that pigment loss and orange eye pigment in additional cave populations were associated with the same genomic regions as observed in the three previously tested cave populations. Moreover, the lack of complementation across all cross combinations suggests that the same gene likely drives pigment loss. These results substantiate a genetic bias in the recurrent evolution of pigment loss in this model system. Future investigations should focus on the cause behind this bias, possibly arising from allele recruitment from ancestral surface populations' genetic variation or advantageous allele effects via pleiotropy.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":"342 6","pages":"425-436"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23256","citationCount":"0","resultStr":"{\"title\":\"Genetic bias in repeated evolution of pigment loss in cave populations of the Asellus aquaticus species complex\",\"authors\":\"Žiga Fišer, Hana Whitehorn, Tia Furness, Peter Trontelj, Meredith Protas\",\"doi\":\"10.1002/jez.b.23256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Similar phenotypes can evolve repeatedly under the same evolutionary pressures. A compelling example is the evolution of pigment loss and eye loss in cave-dwelling animals. While specific genomic regions or genes associated with these phenotypes have been identified in model species, it remains uncertain whether a bias towards particular genetic mechanisms exists. An isopod crustacean, <i>Asellus aquaticus</i>, is an ideal model organism to investigate this phenomenon. It inhabits surface freshwaters throughout Europe but has colonized groundwater on multiple independent occasions and evolved several cave populations with distinct ecomorphology. Previous studies have demonstrated that three different cave populations utilized common genetic regions, potentially the same genes, in the evolution of pigment and eye loss. Expanding on this, we conducted analysis on two additional cave populations, distinct either phylogenetically or biogeographically from those previously examined. We generated F2 hybrids from cave × surface crosses and tested phenotype-genotype associations, as well as conducted complementation tests by crossing individuals from different cave populations. Our findings revealed that pigment loss and orange eye pigment in additional cave populations were associated with the same genomic regions as observed in the three previously tested cave populations. Moreover, the lack of complementation across all cross combinations suggests that the same gene likely drives pigment loss. These results substantiate a genetic bias in the recurrent evolution of pigment loss in this model system. Future investigations should focus on the cause behind this bias, possibly arising from allele recruitment from ancestral surface populations' genetic variation or advantageous allele effects via pleiotropy.</p>\",\"PeriodicalId\":15682,\"journal\":{\"name\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"volume\":\"342 6\",\"pages\":\"425-436\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23256\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part B, Molecular and developmental evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23256\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23256","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Genetic bias in repeated evolution of pigment loss in cave populations of the Asellus aquaticus species complex
Similar phenotypes can evolve repeatedly under the same evolutionary pressures. A compelling example is the evolution of pigment loss and eye loss in cave-dwelling animals. While specific genomic regions or genes associated with these phenotypes have been identified in model species, it remains uncertain whether a bias towards particular genetic mechanisms exists. An isopod crustacean, Asellus aquaticus, is an ideal model organism to investigate this phenomenon. It inhabits surface freshwaters throughout Europe but has colonized groundwater on multiple independent occasions and evolved several cave populations with distinct ecomorphology. Previous studies have demonstrated that three different cave populations utilized common genetic regions, potentially the same genes, in the evolution of pigment and eye loss. Expanding on this, we conducted analysis on two additional cave populations, distinct either phylogenetically or biogeographically from those previously examined. We generated F2 hybrids from cave × surface crosses and tested phenotype-genotype associations, as well as conducted complementation tests by crossing individuals from different cave populations. Our findings revealed that pigment loss and orange eye pigment in additional cave populations were associated with the same genomic regions as observed in the three previously tested cave populations. Moreover, the lack of complementation across all cross combinations suggests that the same gene likely drives pigment loss. These results substantiate a genetic bias in the recurrent evolution of pigment loss in this model system. Future investigations should focus on the cause behind this bias, possibly arising from allele recruitment from ancestral surface populations' genetic variation or advantageous allele effects via pleiotropy.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.