Akbar Hasanzadeh , Arefeh Ebadati , Sara Saeedi , Babak Kamali , Hamid Noori , Behnam Jamei , Michael R. Hamblin , Yong Liu , Mahdi Karimi
{"title":"用于控制货物运输的核酸响应智能系统。","authors":"Akbar Hasanzadeh , Arefeh Ebadati , Sara Saeedi , Babak Kamali , Hamid Noori , Behnam Jamei , Michael R. Hamblin , Yong Liu , Mahdi Karimi","doi":"10.1016/j.biotechadv.2024.108393","DOIUrl":null,"url":null,"abstract":"<div><p>Stimulus-responsive delivery systems allow controlled, highly regulated, and efficient delivery of various cargos while minimizing side effects. Owing to the unique properties of nucleic acids, including the ability to adopt complex structures by base pairing, their easy synthesis, high specificity, shape memory, and configurability, they have been employed in autonomous molecular motors, logic circuits, reconfigurable nanoplatforms, and catalytic amplifiers. Moreover, the development of nucleic acid (NA)-responsive intelligent delivery vehicles is a rapidly growing field. These vehicles have attracted much attention in recent years due to their programmable, controllable, and reversible properties. In this work, we review several types of NA-responsive controlled delivery vehicles based on locks and keys, including DNA/RNA-responsive, aptamer-responsive, and CRISPR-responsive, and summarize their advantages and limitations.</p></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"74 ","pages":"Article 108393"},"PeriodicalIF":12.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nucleic acid-responsive smart systems for controlled cargo delivery\",\"authors\":\"Akbar Hasanzadeh , Arefeh Ebadati , Sara Saeedi , Babak Kamali , Hamid Noori , Behnam Jamei , Michael R. Hamblin , Yong Liu , Mahdi Karimi\",\"doi\":\"10.1016/j.biotechadv.2024.108393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stimulus-responsive delivery systems allow controlled, highly regulated, and efficient delivery of various cargos while minimizing side effects. Owing to the unique properties of nucleic acids, including the ability to adopt complex structures by base pairing, their easy synthesis, high specificity, shape memory, and configurability, they have been employed in autonomous molecular motors, logic circuits, reconfigurable nanoplatforms, and catalytic amplifiers. Moreover, the development of nucleic acid (NA)-responsive intelligent delivery vehicles is a rapidly growing field. These vehicles have attracted much attention in recent years due to their programmable, controllable, and reversible properties. In this work, we review several types of NA-responsive controlled delivery vehicles based on locks and keys, including DNA/RNA-responsive, aptamer-responsive, and CRISPR-responsive, and summarize their advantages and limitations.</p></div>\",\"PeriodicalId\":8946,\"journal\":{\"name\":\"Biotechnology advances\",\"volume\":\"74 \",\"pages\":\"Article 108393\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology advances\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0734975024000879\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975024000879","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Nucleic acid-responsive smart systems for controlled cargo delivery
Stimulus-responsive delivery systems allow controlled, highly regulated, and efficient delivery of various cargos while minimizing side effects. Owing to the unique properties of nucleic acids, including the ability to adopt complex structures by base pairing, their easy synthesis, high specificity, shape memory, and configurability, they have been employed in autonomous molecular motors, logic circuits, reconfigurable nanoplatforms, and catalytic amplifiers. Moreover, the development of nucleic acid (NA)-responsive intelligent delivery vehicles is a rapidly growing field. These vehicles have attracted much attention in recent years due to their programmable, controllable, and reversible properties. In this work, we review several types of NA-responsive controlled delivery vehicles based on locks and keys, including DNA/RNA-responsive, aptamer-responsive, and CRISPR-responsive, and summarize their advantages and limitations.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.