{"title":"PFMNet:基于原型的特征映射网络,用于医学影像分割中的少量领域适应。","authors":"Runze Wang, Guoyan Zheng","doi":"10.1016/j.compmedimag.2024.102406","DOIUrl":null,"url":null,"abstract":"<div><p>Lack of data is one of the biggest hurdles for rare disease research using deep learning. Due to the lack of rare-disease images and annotations, training a robust network for automatic rare-disease image segmentation is very challenging. To address this challenge, few-shot domain adaptation (FSDA) has emerged as a practical research direction, aiming to leverage a limited number of annotated images from a target domain to facilitate adaptation of models trained on other large datasets in a source domain. In this paper, we present a novel prototype-based feature mapping network (PFMNet) designed for FSDA in medical image segmentation. PFMNet adopts an encoder–decoder structure for segmentation, with the prototype-based feature mapping (PFM) module positioned at the bottom of the encoder–decoder structure. The PFM module transforms high-level features from the target domain into the source domain-like features that are more easily comprehensible by the decoder. By leveraging these source domain-like features, the decoder can effectively perform few-shot segmentation in the target domain and generate accurate segmentation masks. We evaluate the performance of PFMNet through experiments on three typical yet challenging few-shot medical image segmentation tasks: cross-center optic disc/cup segmentation, cross-center polyp segmentation, and cross-modality cardiac structure segmentation. We consider four different settings: 5-shot, 10-shot, 15-shot, and 20-shot. The experimental results substantiate the efficacy of our proposed approach for few-shot domain adaptation in medical image segmentation.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"116 ","pages":"Article 102406"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PFMNet: Prototype-based feature mapping network for few-shot domain adaptation in medical image segmentation\",\"authors\":\"Runze Wang, Guoyan Zheng\",\"doi\":\"10.1016/j.compmedimag.2024.102406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lack of data is one of the biggest hurdles for rare disease research using deep learning. Due to the lack of rare-disease images and annotations, training a robust network for automatic rare-disease image segmentation is very challenging. To address this challenge, few-shot domain adaptation (FSDA) has emerged as a practical research direction, aiming to leverage a limited number of annotated images from a target domain to facilitate adaptation of models trained on other large datasets in a source domain. In this paper, we present a novel prototype-based feature mapping network (PFMNet) designed for FSDA in medical image segmentation. PFMNet adopts an encoder–decoder structure for segmentation, with the prototype-based feature mapping (PFM) module positioned at the bottom of the encoder–decoder structure. The PFM module transforms high-level features from the target domain into the source domain-like features that are more easily comprehensible by the decoder. By leveraging these source domain-like features, the decoder can effectively perform few-shot segmentation in the target domain and generate accurate segmentation masks. We evaluate the performance of PFMNet through experiments on three typical yet challenging few-shot medical image segmentation tasks: cross-center optic disc/cup segmentation, cross-center polyp segmentation, and cross-modality cardiac structure segmentation. We consider four different settings: 5-shot, 10-shot, 15-shot, and 20-shot. The experimental results substantiate the efficacy of our proposed approach for few-shot domain adaptation in medical image segmentation.</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"116 \",\"pages\":\"Article 102406\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000831\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000831","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
PFMNet: Prototype-based feature mapping network for few-shot domain adaptation in medical image segmentation
Lack of data is one of the biggest hurdles for rare disease research using deep learning. Due to the lack of rare-disease images and annotations, training a robust network for automatic rare-disease image segmentation is very challenging. To address this challenge, few-shot domain adaptation (FSDA) has emerged as a practical research direction, aiming to leverage a limited number of annotated images from a target domain to facilitate adaptation of models trained on other large datasets in a source domain. In this paper, we present a novel prototype-based feature mapping network (PFMNet) designed for FSDA in medical image segmentation. PFMNet adopts an encoder–decoder structure for segmentation, with the prototype-based feature mapping (PFM) module positioned at the bottom of the encoder–decoder structure. The PFM module transforms high-level features from the target domain into the source domain-like features that are more easily comprehensible by the decoder. By leveraging these source domain-like features, the decoder can effectively perform few-shot segmentation in the target domain and generate accurate segmentation masks. We evaluate the performance of PFMNet through experiments on three typical yet challenging few-shot medical image segmentation tasks: cross-center optic disc/cup segmentation, cross-center polyp segmentation, and cross-modality cardiac structure segmentation. We consider four different settings: 5-shot, 10-shot, 15-shot, and 20-shot. The experimental results substantiate the efficacy of our proposed approach for few-shot domain adaptation in medical image segmentation.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.