绿茶合成银纳米粒子的激光碎裂及其血液毒性:激光波长对颗粒直径的影响

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Physics Pub Date : 2024-01-01 Epub Date: 2024-03-30 DOI:10.4103/jmp.jmp_153_23
Ashraf M Alattar, Israa F Al-Sharuee, Jafer Fahdel Odah
{"title":"绿茶合成银纳米粒子的激光碎裂及其血液毒性:激光波长对颗粒直径的影响","authors":"Ashraf M Alattar, Israa F Al-Sharuee, Jafer Fahdel Odah","doi":"10.4103/jmp.jmp_153_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The efficacy of fractionation is significantly impacted by the colloidal particles' spontaneous absorption of laser beam radiation. The classification of silver nanoparticles during fragmentation processing is regulated through the collection of a combination of laser pulses with wavelengths of 1064 nm and 532 nm.</p><p><strong>Aims and objectives: </strong>This study presents an investigation of the efficacy of a plant extract in conjunction with the incorporation of supplementary silver nanoparticles, as well as the generation of smaller-sized silver nanoparticles using laser fragmentation.and then measure thier toxity on the blood.</p><p><strong>Results: </strong>Ag nanoparticles were synthesized using pulsed laser fragmentation on green tea AgNPs. The synthesis process involved the utilization of a Q-switch Nd:YAG laser with wavelengths of 1064 nm and 532 nm, with energy ranging from 200 to 1000 mJ. Initially, a silver nano colloid was synthesized through the process of fragmented of the Ag target using the second harmonic generation of 532 nm at various energy levels. The optimal energy within the selected wavelengths was determined in order to facilitate the ultimate comparison. Transmission electron microscopy (TEM) was used to determine surface morphology and average particle size, while a spectrophotometer was used to analyses UV light's spectrum characteristics. The measurements focused on the surface plasmon resonance (SPR) phenomenon. The absorption spectra of silver nanoparticles exhibit distinct and prominent peaks at wavelengths of 405 nm and 415 nm. The mean diameter of the silver nanoparticles was found to be 16 nm and 20 nm, corresponding to wavelengths of 1064 nm and 532 nm, respectively.</p><p><strong>Conclusion: </strong>As a consequence, there is a decrease in the range of particle sizes and a decrease in the mean size to lower magnitudes, resulting in a very stable colloid. This particular methodology has demonstrated considerable efficacy in the production of colloidal suspensions with the intended particle dimensions. Moreover, by the analysis of nanoparticles in human blood, no discernible alterations in the blood constituents were seen, indicating their non-toxic nature.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 1","pages":"95-102"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141748/pdf/","citationCount":"0","resultStr":"{\"title\":\"Laser Fragmentation of Green Tea-synthesized Silver Nanoparticles and Their Blood Toxicity: Effect of Laser Wavelength on Particle Diameters.\",\"authors\":\"Ashraf M Alattar, Israa F Al-Sharuee, Jafer Fahdel Odah\",\"doi\":\"10.4103/jmp.jmp_153_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The efficacy of fractionation is significantly impacted by the colloidal particles' spontaneous absorption of laser beam radiation. The classification of silver nanoparticles during fragmentation processing is regulated through the collection of a combination of laser pulses with wavelengths of 1064 nm and 532 nm.</p><p><strong>Aims and objectives: </strong>This study presents an investigation of the efficacy of a plant extract in conjunction with the incorporation of supplementary silver nanoparticles, as well as the generation of smaller-sized silver nanoparticles using laser fragmentation.and then measure thier toxity on the blood.</p><p><strong>Results: </strong>Ag nanoparticles were synthesized using pulsed laser fragmentation on green tea AgNPs. The synthesis process involved the utilization of a Q-switch Nd:YAG laser with wavelengths of 1064 nm and 532 nm, with energy ranging from 200 to 1000 mJ. Initially, a silver nano colloid was synthesized through the process of fragmented of the Ag target using the second harmonic generation of 532 nm at various energy levels. The optimal energy within the selected wavelengths was determined in order to facilitate the ultimate comparison. Transmission electron microscopy (TEM) was used to determine surface morphology and average particle size, while a spectrophotometer was used to analyses UV light's spectrum characteristics. The measurements focused on the surface plasmon resonance (SPR) phenomenon. The absorption spectra of silver nanoparticles exhibit distinct and prominent peaks at wavelengths of 405 nm and 415 nm. The mean diameter of the silver nanoparticles was found to be 16 nm and 20 nm, corresponding to wavelengths of 1064 nm and 532 nm, respectively.</p><p><strong>Conclusion: </strong>As a consequence, there is a decrease in the range of particle sizes and a decrease in the mean size to lower magnitudes, resulting in a very stable colloid. This particular methodology has demonstrated considerable efficacy in the production of colloidal suspensions with the intended particle dimensions. Moreover, by the analysis of nanoparticles in human blood, no discernible alterations in the blood constituents were seen, indicating their non-toxic nature.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"49 1\",\"pages\":\"95-102\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141748/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_153_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_153_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:胶体粒子对激光束辐射的自发吸收会对碎裂效果产生重大影响。在碎裂处理过程中,银纳米颗粒的分类是通过收集波长为 1064 纳米和 532 纳米的激光脉冲组合来调节的:本研究调查了一种植物提取物与辅助纳米银粒子结合的功效,以及利用激光碎裂法生成更小尺寸的纳米银粒子,然后测量其对血液的毒性:结果:利用脉冲激光碎裂法合成了绿茶银纳米粒子。合成过程中使用了 Q 开关 Nd:YAG 激光器,波长为 1064 nm 和 532 nm,能量范围为 200 至 1000 mJ。最初,利用 532 纳米波长的二次谐波产生不同能量水平的银靶碎片,合成了纳米银胶体。为了便于最终比较,确定了所选波长内的最佳能量。透射电子显微镜(TEM)用于确定表面形态和平均粒度,而分光光度计则用于分析紫外光的光谱特性。测量的重点是表面等离子体共振(SPR)现象。银纳米粒子的吸收光谱在波长 405 纳米和 415 纳米处显示出明显而突出的峰值。银纳米粒子的平均直径分别为 16 纳米和 20 纳米,对应的波长分别为 1064 纳米和 532 纳米:因此,粒度范围缩小,平均粒度降低,从而形成非常稳定的胶体。这种特殊的方法在生产具有预期颗粒尺寸的胶体悬浮液方面显示出相当大的功效。此外,通过分析人体血液中的纳米粒子,没有发现血液成分发生明显变化,这表明纳米粒子是无毒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser Fragmentation of Green Tea-synthesized Silver Nanoparticles and Their Blood Toxicity: Effect of Laser Wavelength on Particle Diameters.

Background: The efficacy of fractionation is significantly impacted by the colloidal particles' spontaneous absorption of laser beam radiation. The classification of silver nanoparticles during fragmentation processing is regulated through the collection of a combination of laser pulses with wavelengths of 1064 nm and 532 nm.

Aims and objectives: This study presents an investigation of the efficacy of a plant extract in conjunction with the incorporation of supplementary silver nanoparticles, as well as the generation of smaller-sized silver nanoparticles using laser fragmentation.and then measure thier toxity on the blood.

Results: Ag nanoparticles were synthesized using pulsed laser fragmentation on green tea AgNPs. The synthesis process involved the utilization of a Q-switch Nd:YAG laser with wavelengths of 1064 nm and 532 nm, with energy ranging from 200 to 1000 mJ. Initially, a silver nano colloid was synthesized through the process of fragmented of the Ag target using the second harmonic generation of 532 nm at various energy levels. The optimal energy within the selected wavelengths was determined in order to facilitate the ultimate comparison. Transmission electron microscopy (TEM) was used to determine surface morphology and average particle size, while a spectrophotometer was used to analyses UV light's spectrum characteristics. The measurements focused on the surface plasmon resonance (SPR) phenomenon. The absorption spectra of silver nanoparticles exhibit distinct and prominent peaks at wavelengths of 405 nm and 415 nm. The mean diameter of the silver nanoparticles was found to be 16 nm and 20 nm, corresponding to wavelengths of 1064 nm and 532 nm, respectively.

Conclusion: As a consequence, there is a decrease in the range of particle sizes and a decrease in the mean size to lower magnitudes, resulting in a very stable colloid. This particular methodology has demonstrated considerable efficacy in the production of colloidal suspensions with the intended particle dimensions. Moreover, by the analysis of nanoparticles in human blood, no discernible alterations in the blood constituents were seen, indicating their non-toxic nature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Physics
Journal of Medical Physics RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.10
自引率
11.10%
发文量
55
审稿时长
30 weeks
期刊介绍: JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.
期刊最新文献
A Segmentation-based Automated Calculation of Patient Size and Size-specific Dose Estimates in Pediatric Computed Tomography Scans. A Study on Radiation Level at the Treatment Plane Due to Induced Activity in Linear Accelerator Head. Advancements and Applications of Three-dimensional Printing Technology in Surgery. Agar-based Phantom for Evaluating Targeting of High-intensity Focused Ultrasound Systems for Breast Ablation. An Analysis of Radiotherapy Machine Requirements in India: Impact of the Pandemic and Regional Disparities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1