Shriram Rajurkar, Teerthraj Verma, S P Mishra, Mlb Bhatt
{"title":"用于实时识别病人的新型人工智能工具,防止医疗保健中的身份识别错误。","authors":"Shriram Rajurkar, Teerthraj Verma, S P Mishra, Mlb Bhatt","doi":"10.4103/jmp.jmp_106_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Errors in the identification of true patients in a health-care facility may result in the wrong dose or dosage being given to the wrong patient at the wrong site during radiotherapy sessions, radiopharmaceutical administration, radiological scans, etc. The aim of this article is to reduce the error in the identification of correct patients by implementation of the Python deep learning-based real-time patient identification program.</p><p><strong>Materials and methods: </strong>The authors utilized and installed Anaconda Prompt (miniconda 3), Python (version 3.9.12), and Visual Studio Code (version 1.71.0) for the design of the patient identification program. In the field of view, the area of interest is merely face detection. The overall performance of the developed program is accomplished over three steps, namely image data collection, data transfer, and data analysis, respectively. The patient identification tool was developed using the OpenCV library for face recognition.</p><p><strong>Results: </strong>This program provides real-time patient identification information, together with the other preset parameters such as disease site, with a precision of 0.92%, recall rate of 0.80%, and specificity of 0.90%. Furthermore, the accuracy of the program was found to be 0.84%. The output of the in-house developed program as \"Unknown\" is provided if a patient's relative or an unknown person is found in restricted region.</p><p><strong>Interpretation and conclusions: </strong>This Python-based program is beneficial for confirming the patient's identity, without manual interventions, just before therapy, administering medications, and starting other medical procedures, among other things, to prevent unintended medical and health-related complications that may arise as a result of misidentification.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 1","pages":"41-48"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141754/pdf/","citationCount":"0","resultStr":"{\"title\":\"Novel Artificial Intelligence Tool for Real-time Patient Identification to Prevent Misidentification in Health Care.\",\"authors\":\"Shriram Rajurkar, Teerthraj Verma, S P Mishra, Mlb Bhatt\",\"doi\":\"10.4103/jmp.jmp_106_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Errors in the identification of true patients in a health-care facility may result in the wrong dose or dosage being given to the wrong patient at the wrong site during radiotherapy sessions, radiopharmaceutical administration, radiological scans, etc. The aim of this article is to reduce the error in the identification of correct patients by implementation of the Python deep learning-based real-time patient identification program.</p><p><strong>Materials and methods: </strong>The authors utilized and installed Anaconda Prompt (miniconda 3), Python (version 3.9.12), and Visual Studio Code (version 1.71.0) for the design of the patient identification program. In the field of view, the area of interest is merely face detection. The overall performance of the developed program is accomplished over three steps, namely image data collection, data transfer, and data analysis, respectively. The patient identification tool was developed using the OpenCV library for face recognition.</p><p><strong>Results: </strong>This program provides real-time patient identification information, together with the other preset parameters such as disease site, with a precision of 0.92%, recall rate of 0.80%, and specificity of 0.90%. Furthermore, the accuracy of the program was found to be 0.84%. The output of the in-house developed program as \\\"Unknown\\\" is provided if a patient's relative or an unknown person is found in restricted region.</p><p><strong>Interpretation and conclusions: </strong>This Python-based program is beneficial for confirming the patient's identity, without manual interventions, just before therapy, administering medications, and starting other medical procedures, among other things, to prevent unintended medical and health-related complications that may arise as a result of misidentification.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"49 1\",\"pages\":\"41-48\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141754/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_106_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_106_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Novel Artificial Intelligence Tool for Real-time Patient Identification to Prevent Misidentification in Health Care.
Purpose: Errors in the identification of true patients in a health-care facility may result in the wrong dose or dosage being given to the wrong patient at the wrong site during radiotherapy sessions, radiopharmaceutical administration, radiological scans, etc. The aim of this article is to reduce the error in the identification of correct patients by implementation of the Python deep learning-based real-time patient identification program.
Materials and methods: The authors utilized and installed Anaconda Prompt (miniconda 3), Python (version 3.9.12), and Visual Studio Code (version 1.71.0) for the design of the patient identification program. In the field of view, the area of interest is merely face detection. The overall performance of the developed program is accomplished over three steps, namely image data collection, data transfer, and data analysis, respectively. The patient identification tool was developed using the OpenCV library for face recognition.
Results: This program provides real-time patient identification information, together with the other preset parameters such as disease site, with a precision of 0.92%, recall rate of 0.80%, and specificity of 0.90%. Furthermore, the accuracy of the program was found to be 0.84%. The output of the in-house developed program as "Unknown" is provided if a patient's relative or an unknown person is found in restricted region.
Interpretation and conclusions: This Python-based program is beneficial for confirming the patient's identity, without manual interventions, just before therapy, administering medications, and starting other medical procedures, among other things, to prevent unintended medical and health-related complications that may arise as a result of misidentification.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.