Daniel Arrington, Ryan Motley, Zachery Morton Colbert, Margot Lehman, Prabhakar Ramachandran
{"title":"PAHPhysRAD:用于分割和提取放射特征的数字成像和医学通信研究工具。","authors":"Daniel Arrington, Ryan Motley, Zachery Morton Colbert, Margot Lehman, Prabhakar Ramachandran","doi":"10.4103/jmp.jmp_120_23","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Segmentation and analysis of organs at risks (OARs) and tumor volumes are integral concepts in the development of radiotherapy treatment plans and prediction of patients' treatment outcomes.</p><p><strong>Aims: </strong>To develop a research tool, PAHPhysRAD, that can be used to semi- and fully automate segmentation of OARs. In addition, the proposed software seeks to extract 3214 radiomic features from tumor volumes and user-specified dose-volume parameters.</p><p><strong>Materials and methods: </strong>Developed within MATLAB, PAHPhysRAD provides a comprehensive suite of segmentation tools, including manual, semi-automatic, and automatic options. For semi-autosegmentation, meta AI's Segment Anything Model was incorporated using the bounding box methods. Autosegmentation of OARs and tumor volume are implemented through a module that enables the addition of models in Open Neural Network Exchange format. To validate the radiomic feature extraction module in PAHPhysRAD, radiomic features extracted from gross tumor volume of 15 non-small cell lung carcinoma patients were compared against the features extracted from 3D Slicer™. The dose-volume parameters extraction module was validated using the dose volume data extracted from 28 tangential field-based breast treatment planning datasets. The volume receiving ≥20 Gy (V20) for ipsilateral lung and the mean doses received by the heart and ipsilateral lung, were compared against the parameters extracted from Eclipse.</p><p><strong>Results: </strong>The Wilcoxon signed-rank test revealed no significant difference between the majority of the radiomic features derived from PAHPhysRAD and 3D Slicer. The average mean lung and heart doses calculated in Eclipse were 5.51 ± 2.28 Gy and 1.64 ± 1.98 Gy, respectively. Similarly, the average mean lung and heart doses calculated in PAHPhysRAD were 5.45 ± 2.89 Gy and 1.67 ± 2.08 Gy, respectively.</p><p><strong>Conclusion: </strong>The MATLAB-based graphical user interface, PAHPhysRAD, offers a user-friendly platform for viewing and analyzing medical scans with options to extract radiomic features and dose-volume parameters. Its versatility, compatibility, and potential for further development make it an asset in medical image analysis.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 1","pages":"12-21"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141757/pdf/","citationCount":"0","resultStr":"{\"title\":\"PAHPhysRAD: A Digital Imaging and Communications in Medicine Research Tool for Segmentation and Radiomic Feature Extraction.\",\"authors\":\"Daniel Arrington, Ryan Motley, Zachery Morton Colbert, Margot Lehman, Prabhakar Ramachandran\",\"doi\":\"10.4103/jmp.jmp_120_23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Segmentation and analysis of organs at risks (OARs) and tumor volumes are integral concepts in the development of radiotherapy treatment plans and prediction of patients' treatment outcomes.</p><p><strong>Aims: </strong>To develop a research tool, PAHPhysRAD, that can be used to semi- and fully automate segmentation of OARs. In addition, the proposed software seeks to extract 3214 radiomic features from tumor volumes and user-specified dose-volume parameters.</p><p><strong>Materials and methods: </strong>Developed within MATLAB, PAHPhysRAD provides a comprehensive suite of segmentation tools, including manual, semi-automatic, and automatic options. For semi-autosegmentation, meta AI's Segment Anything Model was incorporated using the bounding box methods. Autosegmentation of OARs and tumor volume are implemented through a module that enables the addition of models in Open Neural Network Exchange format. To validate the radiomic feature extraction module in PAHPhysRAD, radiomic features extracted from gross tumor volume of 15 non-small cell lung carcinoma patients were compared against the features extracted from 3D Slicer™. The dose-volume parameters extraction module was validated using the dose volume data extracted from 28 tangential field-based breast treatment planning datasets. The volume receiving ≥20 Gy (V20) for ipsilateral lung and the mean doses received by the heart and ipsilateral lung, were compared against the parameters extracted from Eclipse.</p><p><strong>Results: </strong>The Wilcoxon signed-rank test revealed no significant difference between the majority of the radiomic features derived from PAHPhysRAD and 3D Slicer. The average mean lung and heart doses calculated in Eclipse were 5.51 ± 2.28 Gy and 1.64 ± 1.98 Gy, respectively. Similarly, the average mean lung and heart doses calculated in PAHPhysRAD were 5.45 ± 2.89 Gy and 1.67 ± 2.08 Gy, respectively.</p><p><strong>Conclusion: </strong>The MATLAB-based graphical user interface, PAHPhysRAD, offers a user-friendly platform for viewing and analyzing medical scans with options to extract radiomic features and dose-volume parameters. Its versatility, compatibility, and potential for further development make it an asset in medical image analysis.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"49 1\",\"pages\":\"12-21\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11141757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_120_23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_120_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
PAHPhysRAD: A Digital Imaging and Communications in Medicine Research Tool for Segmentation and Radiomic Feature Extraction.
Introduction: Segmentation and analysis of organs at risks (OARs) and tumor volumes are integral concepts in the development of radiotherapy treatment plans and prediction of patients' treatment outcomes.
Aims: To develop a research tool, PAHPhysRAD, that can be used to semi- and fully automate segmentation of OARs. In addition, the proposed software seeks to extract 3214 radiomic features from tumor volumes and user-specified dose-volume parameters.
Materials and methods: Developed within MATLAB, PAHPhysRAD provides a comprehensive suite of segmentation tools, including manual, semi-automatic, and automatic options. For semi-autosegmentation, meta AI's Segment Anything Model was incorporated using the bounding box methods. Autosegmentation of OARs and tumor volume are implemented through a module that enables the addition of models in Open Neural Network Exchange format. To validate the radiomic feature extraction module in PAHPhysRAD, radiomic features extracted from gross tumor volume of 15 non-small cell lung carcinoma patients were compared against the features extracted from 3D Slicer™. The dose-volume parameters extraction module was validated using the dose volume data extracted from 28 tangential field-based breast treatment planning datasets. The volume receiving ≥20 Gy (V20) for ipsilateral lung and the mean doses received by the heart and ipsilateral lung, were compared against the parameters extracted from Eclipse.
Results: The Wilcoxon signed-rank test revealed no significant difference between the majority of the radiomic features derived from PAHPhysRAD and 3D Slicer. The average mean lung and heart doses calculated in Eclipse were 5.51 ± 2.28 Gy and 1.64 ± 1.98 Gy, respectively. Similarly, the average mean lung and heart doses calculated in PAHPhysRAD were 5.45 ± 2.89 Gy and 1.67 ± 2.08 Gy, respectively.
Conclusion: The MATLAB-based graphical user interface, PAHPhysRAD, offers a user-friendly platform for viewing and analyzing medical scans with options to extract radiomic features and dose-volume parameters. Its versatility, compatibility, and potential for further development make it an asset in medical image analysis.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.