{"title":"水平各向异性多孔通道中的传热分析:双粘性宾汉纳米流体和随温度变化的布朗扩散","authors":"Ankita Bisht, Sanjalee Maheshwari","doi":"10.1108/mmms-01-2024-0019","DOIUrl":null,"url":null,"abstract":"PurposeThe purpose of this article is to present a mathematical model for the fully developed flow of Bi-viscous Bingham nanofluid through a uniform-width anisotropic porous channel. The model incorporates a generalized Brinkman-Darcy formulation for the porous layers while considering the motion of nanoparticles influenced by both Brownian diffusion and thermophoresis effects.Design/methodology/approachThe similarity transformations derived through Lie group analysis are used to reduce the system from nonlinear partial differential equations to nonlinear ordinary differential equations. The finite difference method-based numerical routine bvp4c is employed to collect and graphically present the outcomes for velocity, temperature, and nanoparticle concentration profiles. The flow pattern is analyzed through streamlined plots. Furthermore, skin friction, heat, and mass transmission rates are investigated and presented via line plots.FindingsIt is observed that in anisotropic porous media, the temperature profile is stronger than in isotropic porous media. The thermal anisotropic parameter enhances the concentration profile while reducing the temperature.Practical implicationsAnisotropy arises in various industrial and natural systems due to factors such as preferred orientation or asymmetric geometry of fibers or grains. Hence, this study has applications in oil extraction processes, certain fibrous and biological materials, geological formations, and dendritic zones formed during the solidification of binary alloys.Originality/value1. The permeability and thermal conductivity are not constant; instead, they have different values in the x and y directions. 2. This study considers the dependency of thermophoresis on nanoparticle volume fraction and Brownian diffusion on the temperature in both the fluid flow equations and boundary conditions. 3. A novel similarity transformation is derived using Lie group analysis instead of using an existing transformation already available in the literature.","PeriodicalId":46760,"journal":{"name":"Multidiscipline Modeling in Materials and Structures","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transfer analysis in a horizontal anisotropic porous channel with Bi-viscous Bingham nanofluid and temperature-dependent Brownian diffusion\",\"authors\":\"Ankita Bisht, Sanjalee Maheshwari\",\"doi\":\"10.1108/mmms-01-2024-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThe purpose of this article is to present a mathematical model for the fully developed flow of Bi-viscous Bingham nanofluid through a uniform-width anisotropic porous channel. The model incorporates a generalized Brinkman-Darcy formulation for the porous layers while considering the motion of nanoparticles influenced by both Brownian diffusion and thermophoresis effects.Design/methodology/approachThe similarity transformations derived through Lie group analysis are used to reduce the system from nonlinear partial differential equations to nonlinear ordinary differential equations. The finite difference method-based numerical routine bvp4c is employed to collect and graphically present the outcomes for velocity, temperature, and nanoparticle concentration profiles. The flow pattern is analyzed through streamlined plots. Furthermore, skin friction, heat, and mass transmission rates are investigated and presented via line plots.FindingsIt is observed that in anisotropic porous media, the temperature profile is stronger than in isotropic porous media. The thermal anisotropic parameter enhances the concentration profile while reducing the temperature.Practical implicationsAnisotropy arises in various industrial and natural systems due to factors such as preferred orientation or asymmetric geometry of fibers or grains. Hence, this study has applications in oil extraction processes, certain fibrous and biological materials, geological formations, and dendritic zones formed during the solidification of binary alloys.Originality/value1. The permeability and thermal conductivity are not constant; instead, they have different values in the x and y directions. 2. This study considers the dependency of thermophoresis on nanoparticle volume fraction and Brownian diffusion on the temperature in both the fluid flow equations and boundary conditions. 3. A novel similarity transformation is derived using Lie group analysis instead of using an existing transformation already available in the literature.\",\"PeriodicalId\":46760,\"journal\":{\"name\":\"Multidiscipline Modeling in Materials and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multidiscipline Modeling in Materials and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/mmms-01-2024-0019\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multidiscipline Modeling in Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/mmms-01-2024-0019","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文的目的是提出一种数学模型,用于解释双粘性宾汉纳米流体在均匀宽度各向异性多孔通道中的充分流动。该模型结合了多孔层的广义布林克曼-达西(Brinkman-Darcy)公式,同时考虑了受布朗扩散和热泳效应影响的纳米粒子运动。采用基于有限差分法的数值例程 bvp4c 来收集速度、温度和纳米粒子浓度剖面的结果,并以图形方式呈现。通过流线图分析了流动模式。研究结果表明,在各向异性多孔介质中,温度曲线比在各向同性多孔介质中更强。热各向异性参数在降低温度的同时增强了浓度分布。实际意义由于纤维或晶粒的优先取向或不对称几何形状等因素,各向异性出现在各种工业和自然系统中。因此,这项研究可应用于石油开采过程、某些纤维和生物材料、地质构造以及二元合金凝固过程中形成的树枝状区域。渗透率和导热率并不是恒定的;相反,它们在 x 和 y 方向上具有不同的值。2.本研究在流体流动方程和边界条件中考虑了热泳对纳米粒子体积分数的依赖性和布朗扩散对温度的依赖性。3.利用李群分析法推导出一种新的相似性变换,而不是使用文献中已有的变换。
Heat transfer analysis in a horizontal anisotropic porous channel with Bi-viscous Bingham nanofluid and temperature-dependent Brownian diffusion
PurposeThe purpose of this article is to present a mathematical model for the fully developed flow of Bi-viscous Bingham nanofluid through a uniform-width anisotropic porous channel. The model incorporates a generalized Brinkman-Darcy formulation for the porous layers while considering the motion of nanoparticles influenced by both Brownian diffusion and thermophoresis effects.Design/methodology/approachThe similarity transformations derived through Lie group analysis are used to reduce the system from nonlinear partial differential equations to nonlinear ordinary differential equations. The finite difference method-based numerical routine bvp4c is employed to collect and graphically present the outcomes for velocity, temperature, and nanoparticle concentration profiles. The flow pattern is analyzed through streamlined plots. Furthermore, skin friction, heat, and mass transmission rates are investigated and presented via line plots.FindingsIt is observed that in anisotropic porous media, the temperature profile is stronger than in isotropic porous media. The thermal anisotropic parameter enhances the concentration profile while reducing the temperature.Practical implicationsAnisotropy arises in various industrial and natural systems due to factors such as preferred orientation or asymmetric geometry of fibers or grains. Hence, this study has applications in oil extraction processes, certain fibrous and biological materials, geological formations, and dendritic zones formed during the solidification of binary alloys.Originality/value1. The permeability and thermal conductivity are not constant; instead, they have different values in the x and y directions. 2. This study considers the dependency of thermophoresis on nanoparticle volume fraction and Brownian diffusion on the temperature in both the fluid flow equations and boundary conditions. 3. A novel similarity transformation is derived using Lie group analysis instead of using an existing transformation already available in the literature.