利用鸽子启发优化算法中的整流线性单元函数增强入侵检测系统

Agus Tedyyana, Osman Ghazali, Onno W. Purbo, M. A. A. Seman
{"title":"利用鸽子启发优化算法中的整流线性单元函数增强入侵检测系统","authors":"Agus Tedyyana, Osman Ghazali, Onno W. Purbo, M. A. A. Seman","doi":"10.11591/ijai.v13.i2.pp1526-1534","DOIUrl":null,"url":null,"abstract":"The increasing rate of cybercrime in the digital world highlights the importance of having a reliable intrusion detection system (IDS) to detect unauthorized attacks and notify administrators. IDS can leverage machine learning techniques to identify patterns of attacks and provide real-time notifications. In building a successful IDS, selecting the right features is crucial as it determines the accuracy of the predictions made by the model. This paper presents a new IDS algorithm that combines the rectified linear unit (ReLU) activation function with a pigeon-inspired optimizer in feature selection. The proposed algorithm was evaluated on network security layer - knowledge discovery in databases (NSL-KDD) datasets and demonstrated improved performance in terms of training speed and accuracy compared to previous IDS models. Thus, the use of the ReLU activation function and a pigeon-inspired optimizer in feature selection can significantly enhance the effectiveness of an IDS in detecting unauthorized attacks.","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"9 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing intrusion detection system using rectified linear unit function in pigeon inspired optimization algorithm\",\"authors\":\"Agus Tedyyana, Osman Ghazali, Onno W. Purbo, M. A. A. Seman\",\"doi\":\"10.11591/ijai.v13.i2.pp1526-1534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing rate of cybercrime in the digital world highlights the importance of having a reliable intrusion detection system (IDS) to detect unauthorized attacks and notify administrators. IDS can leverage machine learning techniques to identify patterns of attacks and provide real-time notifications. In building a successful IDS, selecting the right features is crucial as it determines the accuracy of the predictions made by the model. This paper presents a new IDS algorithm that combines the rectified linear unit (ReLU) activation function with a pigeon-inspired optimizer in feature selection. The proposed algorithm was evaluated on network security layer - knowledge discovery in databases (NSL-KDD) datasets and demonstrated improved performance in terms of training speed and accuracy compared to previous IDS models. Thus, the use of the ReLU activation function and a pigeon-inspired optimizer in feature selection can significantly enhance the effectiveness of an IDS in detecting unauthorized attacks.\",\"PeriodicalId\":507934,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"volume\":\"9 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v13.i2.pp1526-1534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp1526-1534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字世界中的网络犯罪率不断上升,这凸显了拥有一个可靠的入侵检测系统(IDS)来检测未经授权的攻击并通知管理员的重要性。IDS 可以利用机器学习技术来识别攻击模式并提供实时通知。在构建成功的 IDS 时,选择正确的特征至关重要,因为它决定了模型预测的准确性。本文提出了一种新的 IDS 算法,该算法在特征选择中结合了整流线性单元(ReLU)激活函数和鸽子启发优化器。在网络安全层--数据库知识发现(NSL-KDD)数据集上对所提出的算法进行了评估,结果表明,与以前的 IDS 模型相比,该算法在训练速度和准确性方面都有了很大提高。因此,在特征选择中使用 ReLU 激活函数和鸽子启发优化器可以显著提高 IDS 检测未经授权攻击的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing intrusion detection system using rectified linear unit function in pigeon inspired optimization algorithm
The increasing rate of cybercrime in the digital world highlights the importance of having a reliable intrusion detection system (IDS) to detect unauthorized attacks and notify administrators. IDS can leverage machine learning techniques to identify patterns of attacks and provide real-time notifications. In building a successful IDS, selecting the right features is crucial as it determines the accuracy of the predictions made by the model. This paper presents a new IDS algorithm that combines the rectified linear unit (ReLU) activation function with a pigeon-inspired optimizer in feature selection. The proposed algorithm was evaluated on network security layer - knowledge discovery in databases (NSL-KDD) datasets and demonstrated improved performance in terms of training speed and accuracy compared to previous IDS models. Thus, the use of the ReLU activation function and a pigeon-inspired optimizer in feature selection can significantly enhance the effectiveness of an IDS in detecting unauthorized attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FinTech forecasting using an evolving connectionist system for lenders and borrowers: ecosystem behavior Dealing imbalance dataset problem in sentiment analysis of recession in Indonesia A survey on planet leaf disease identification and classification by various machine-learning technique Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+ Feature selection techniques for microarray dataset: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1