预测新发传染病传播的混合深度学习优化方法

F. E. Nastiti, Shahrulniza Musa, Eiad Yafi
{"title":"预测新发传染病传播的混合深度学习优化方法","authors":"F. E. Nastiti, Shahrulniza Musa, Eiad Yafi","doi":"10.11591/ijai.v13.i2.pp2036-2048","DOIUrl":null,"url":null,"abstract":"In this study, a novel approach geared toward predicting the estimated number of coronavirus disease (COVID-19) cases was developed. Combining long short-term memory (LSTM) neural networks with particle swarm optimization (PSO) along with grey wolf optimization (GWO) employ hybrid optimization algorithm techniques. This investigation utilizes COVID-19 original data from the Ministry of Health of Indonesia, period 2020-2021. The developed LSTM-PSO-GWO hybrid optimization algorithm can improve the performance and accuracy of predicting the spread of the COVID-19 virus in Indonesia. In initiating LSTM initial weights with weaknesses, using the hybrid optimization algorithm helps overcome these problems and improve model performance. The results of this study suggest that the LSTM-PSO-GWO model can be utilized as an effective and reliable predictive tool to gauge the COVID-19 virus’s spread in Indonesia. ","PeriodicalId":507934,"journal":{"name":"IAES International Journal of Artificial Intelligence (IJ-AI)","volume":"10 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid deep learning optimization for predicting the spread of a new emerging infectious disease\",\"authors\":\"F. E. Nastiti, Shahrulniza Musa, Eiad Yafi\",\"doi\":\"10.11591/ijai.v13.i2.pp2036-2048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a novel approach geared toward predicting the estimated number of coronavirus disease (COVID-19) cases was developed. Combining long short-term memory (LSTM) neural networks with particle swarm optimization (PSO) along with grey wolf optimization (GWO) employ hybrid optimization algorithm techniques. This investigation utilizes COVID-19 original data from the Ministry of Health of Indonesia, period 2020-2021. The developed LSTM-PSO-GWO hybrid optimization algorithm can improve the performance and accuracy of predicting the spread of the COVID-19 virus in Indonesia. In initiating LSTM initial weights with weaknesses, using the hybrid optimization algorithm helps overcome these problems and improve model performance. The results of this study suggest that the LSTM-PSO-GWO model can be utilized as an effective and reliable predictive tool to gauge the COVID-19 virus’s spread in Indonesia. \",\"PeriodicalId\":507934,\"journal\":{\"name\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"volume\":\"10 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAES International Journal of Artificial Intelligence (IJ-AI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijai.v13.i2.pp2036-2048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAES International Journal of Artificial Intelligence (IJ-AI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijai.v13.i2.pp2036-2048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一种新方法,用于预测冠状病毒病(COVID-19)的估计病例数。将长短期记忆(LSTM)神经网络与粒子群优化(PSO)和灰狼优化(GWO)相结合,采用了混合优化算法技术。这项调查利用了印度尼西亚卫生部 2020-2021 年期间的 COVID-19 原始数据。所开发的 LSTM-PSO-GWO 混合优化算法可以提高预测 COVID-19 病毒在印尼传播的性能和准确性。在初始 LSTM 初始权重存在缺陷时,使用混合优化算法有助于克服这些问题,提高模型性能。本研究的结果表明,LSTM-PSO-GWO 模型可作为一种有效、可靠的预测工具,用于评估 COVID-19 病毒在印度尼西亚的传播情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid deep learning optimization for predicting the spread of a new emerging infectious disease
In this study, a novel approach geared toward predicting the estimated number of coronavirus disease (COVID-19) cases was developed. Combining long short-term memory (LSTM) neural networks with particle swarm optimization (PSO) along with grey wolf optimization (GWO) employ hybrid optimization algorithm techniques. This investigation utilizes COVID-19 original data from the Ministry of Health of Indonesia, period 2020-2021. The developed LSTM-PSO-GWO hybrid optimization algorithm can improve the performance and accuracy of predicting the spread of the COVID-19 virus in Indonesia. In initiating LSTM initial weights with weaknesses, using the hybrid optimization algorithm helps overcome these problems and improve model performance. The results of this study suggest that the LSTM-PSO-GWO model can be utilized as an effective and reliable predictive tool to gauge the COVID-19 virus’s spread in Indonesia. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FinTech forecasting using an evolving connectionist system for lenders and borrowers: ecosystem behavior Dealing imbalance dataset problem in sentiment analysis of recession in Indonesia A survey on planet leaf disease identification and classification by various machine-learning technique Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+ Feature selection techniques for microarray dataset: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1