通过细胞自动机和马尔可夫链建模预测马拉普拉巴右岸运河指挥区的土地利用和土地覆盖变化

M. Madhusudhan, A.V. Shivapur, J.H. Surendra
{"title":"通过细胞自动机和马尔可夫链建模预测马拉普拉巴右岸运河指挥区的土地利用和土地覆盖变化","authors":"M. Madhusudhan, A.V. Shivapur, J.H. Surendra","doi":"10.12912/27197050/186598","DOIUrl":null,"url":null,"abstract":"To formulate an effective growth management plan, it is imperative to comprehend the dynamic changes that transpire. This study focused on identifying such shifts spanning four decades, from 1990 to 2020, and utilized a GIS-integrated approach, employing cellular automata Markov chain model within TerrSet software for the MRBC area, to predict land use and land cover (LULC) for 2030. The accuracy evaluation of the classification method yielded overall accuracy percentages of 94.11%, 94.11%, 90.19%, and 94.12% for 1990, 2000, 2010, and 2020, respectively, accompanied by Kappa values of 0.921, 0.921, 0.895 and 0.922. The LULC map for 2020 was forecasted and compared to the actual map for validation, revealing a discrepancy of less than 5% in class distribution. The study findings indicated a 12.32% reduction in agricultural land (151.7 km 2 ) compared to the 1990 LULC map in the projected 2030 map. In this future scenario, the converted region is allocated to urban and barren land classes. Consequently, decision-makers are urged to take necessary measures to preserve agricultural land from conversion, ensuring the enduring sustainability of agriculture.","PeriodicalId":448145,"journal":{"name":"Ecological Engineering & Environmental Technology","volume":"52 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting Land Use and Land Cover Changes in the Malaprabha Right Bank Canal Command Area through Cellular Automata and Markov Chain Modeling\",\"authors\":\"M. Madhusudhan, A.V. Shivapur, J.H. Surendra\",\"doi\":\"10.12912/27197050/186598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To formulate an effective growth management plan, it is imperative to comprehend the dynamic changes that transpire. This study focused on identifying such shifts spanning four decades, from 1990 to 2020, and utilized a GIS-integrated approach, employing cellular automata Markov chain model within TerrSet software for the MRBC area, to predict land use and land cover (LULC) for 2030. The accuracy evaluation of the classification method yielded overall accuracy percentages of 94.11%, 94.11%, 90.19%, and 94.12% for 1990, 2000, 2010, and 2020, respectively, accompanied by Kappa values of 0.921, 0.921, 0.895 and 0.922. The LULC map for 2020 was forecasted and compared to the actual map for validation, revealing a discrepancy of less than 5% in class distribution. The study findings indicated a 12.32% reduction in agricultural land (151.7 km 2 ) compared to the 1990 LULC map in the projected 2030 map. In this future scenario, the converted region is allocated to urban and barren land classes. Consequently, decision-makers are urged to take necessary measures to preserve agricultural land from conversion, ensuring the enduring sustainability of agriculture.\",\"PeriodicalId\":448145,\"journal\":{\"name\":\"Ecological Engineering & Environmental Technology\",\"volume\":\"52 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering & Environmental Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12912/27197050/186598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering & Environmental Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12912/27197050/186598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

要制定有效的增长管理计划,就必须了解所发生的动态变化。本研究的重点是识别从 1990 年到 2020 年这四十年间的这种变化,并利用地理信息系统集成方法,在 TerrSet 软件中采用单元自动机马尔可夫链模型,对 MRBC 地区 2030 年的土地利用和土地覆被进行预测。分类方法的准确性评估结果显示,1990 年、2000 年、2010 年和 2020 年的总体准确率分别为 94.11%、94.11%、90.19% 和 94.12%,Kappa 值分别为 0.921、0.921、0.895 和 0.922。对 2020 年的土地利用、土地利用变化和土地利用变化图进行了预测,并与实际地图进行了比较验证,结果显示等级分布的差异小于 5%。研究结果表明,与 1990 年的 LULC 地图相比,2030 年的预测地图中的农业用地减少了 12.32%(151.7 平方公里)。在这一未来情景中,经过改造的区域被划分为城市和贫瘠土地等级。因此,我们敦促决策者采取必要措施,保护农用地不被转换,确保农业的持久可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forecasting Land Use and Land Cover Changes in the Malaprabha Right Bank Canal Command Area through Cellular Automata and Markov Chain Modeling
To formulate an effective growth management plan, it is imperative to comprehend the dynamic changes that transpire. This study focused on identifying such shifts spanning four decades, from 1990 to 2020, and utilized a GIS-integrated approach, employing cellular automata Markov chain model within TerrSet software for the MRBC area, to predict land use and land cover (LULC) for 2030. The accuracy evaluation of the classification method yielded overall accuracy percentages of 94.11%, 94.11%, 90.19%, and 94.12% for 1990, 2000, 2010, and 2020, respectively, accompanied by Kappa values of 0.921, 0.921, 0.895 and 0.922. The LULC map for 2020 was forecasted and compared to the actual map for validation, revealing a discrepancy of less than 5% in class distribution. The study findings indicated a 12.32% reduction in agricultural land (151.7 km 2 ) compared to the 1990 LULC map in the projected 2030 map. In this future scenario, the converted region is allocated to urban and barren land classes. Consequently, decision-makers are urged to take necessary measures to preserve agricultural land from conversion, ensuring the enduring sustainability of agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trace Element Correlations in Mussels and Sediments on the Moroccan Mediterranean Coast Analysis of Trends and Impacts of Anthropogenic Factors on Groundwater Quality Investigation into the Feasibility of Using Solar-Powered Household Air Conditioner in the Kurdistan Region of Iraq Assessment of Methane Production Features and Kinetics from Poultry Dropping Waste under Mesophilic Conditions Techno-Economic and Environmental Analysis of a Renewable Hybrid System in Southern Morocco
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1