带有多孔介质层的水下飞行器水下超音速气体射流的数值模拟

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2024-06-01 DOI:10.47176/jafm.17.6.2155
Y. Shen, J. Luo, B. Yang, J. Xia, Y. Wang, S. Li
{"title":"带有多孔介质层的水下飞行器水下超音速气体射流的数值模拟","authors":"Y. Shen, J. Luo, B. Yang, J. Xia, Y. Wang, S. Li","doi":"10.47176/jafm.17.6.2155","DOIUrl":null,"url":null,"abstract":"With regard to the pronounced pressure pulsation and cyclic thrust oscillation observed in the tail flow field of an underwater vehicle operating under over-expanded conditions, and drawing inspiration from flow control techniques involving porous media structures like submarine coral reefs and breakwaters, this paper presents an innovative proposition to incorporate a porous media layer on the tail wall of the nozzle in order to regulate the structure of the tail gaseous jets. To optimize the flow control of underwater vehicles, the utilization of porous media layers with varying degrees of porosity is employed to establish a model for underwater supersonic gaseous jets. This model scrutinizes the intricate structure of the tail gaseous jets, as well as the consequential wall pressure and thrust engendered by the nozzle. The findings eloquently demonstrate that the porous media model, boasting a porosity of 0.34, exerts a diminished influence on the morphological characteristics of the tail gaseous jets, while concurrently yielding a superior flow control effect on the pulsation of tail wall pressure and attenuating the differential thrust generated by the underwater vehicle. Consequently, this innovative approach effectively mitigates overall thrust oscillation, thereby enhancing the stability of the underwater vehicle throughout its submerged operations.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Underwater Supersonic Gaseous Jets of Underwater Vehicle with Porous Media Layer\",\"authors\":\"Y. Shen, J. Luo, B. Yang, J. Xia, Y. Wang, S. Li\",\"doi\":\"10.47176/jafm.17.6.2155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With regard to the pronounced pressure pulsation and cyclic thrust oscillation observed in the tail flow field of an underwater vehicle operating under over-expanded conditions, and drawing inspiration from flow control techniques involving porous media structures like submarine coral reefs and breakwaters, this paper presents an innovative proposition to incorporate a porous media layer on the tail wall of the nozzle in order to regulate the structure of the tail gaseous jets. To optimize the flow control of underwater vehicles, the utilization of porous media layers with varying degrees of porosity is employed to establish a model for underwater supersonic gaseous jets. This model scrutinizes the intricate structure of the tail gaseous jets, as well as the consequential wall pressure and thrust engendered by the nozzle. The findings eloquently demonstrate that the porous media model, boasting a porosity of 0.34, exerts a diminished influence on the morphological characteristics of the tail gaseous jets, while concurrently yielding a superior flow control effect on the pulsation of tail wall pressure and attenuating the differential thrust generated by the underwater vehicle. Consequently, this innovative approach effectively mitigates overall thrust oscillation, thereby enhancing the stability of the underwater vehicle throughout its submerged operations.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.6.2155\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.6.2155","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

针对水下航行器在过度膨胀条件下运行时尾部流场出现的明显压力脉动和周期性推力振荡,并从海底珊瑚礁和防波堤等多孔介质结构的流动控制技术中汲取灵感,本文提出了在喷嘴尾壁加入多孔介质层以调节尾部气态射流结构的创新主张。为了优化水下航行器的流量控制,本文利用不同孔隙度的多孔介质层建立了水下超音速气态射流模型。该模型仔细研究了尾部气态喷流的复杂结构,以及喷嘴产生的壁压和推力。研究结果雄辩地证明,孔隙率为 0.34 的多孔介质模型对尾部气态射流的形态特征影响较小,同时对尾部壁压脉动产生了卓越的流量控制效果,并减弱了水下航行器产生的差动推力。因此,这种创新方法有效地减轻了整体推力振荡,从而增强了水下航行器在整个水下运行过程中的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Simulation of Underwater Supersonic Gaseous Jets of Underwater Vehicle with Porous Media Layer
With regard to the pronounced pressure pulsation and cyclic thrust oscillation observed in the tail flow field of an underwater vehicle operating under over-expanded conditions, and drawing inspiration from flow control techniques involving porous media structures like submarine coral reefs and breakwaters, this paper presents an innovative proposition to incorporate a porous media layer on the tail wall of the nozzle in order to regulate the structure of the tail gaseous jets. To optimize the flow control of underwater vehicles, the utilization of porous media layers with varying degrees of porosity is employed to establish a model for underwater supersonic gaseous jets. This model scrutinizes the intricate structure of the tail gaseous jets, as well as the consequential wall pressure and thrust engendered by the nozzle. The findings eloquently demonstrate that the porous media model, boasting a porosity of 0.34, exerts a diminished influence on the morphological characteristics of the tail gaseous jets, while concurrently yielding a superior flow control effect on the pulsation of tail wall pressure and attenuating the differential thrust generated by the underwater vehicle. Consequently, this innovative approach effectively mitigates overall thrust oscillation, thereby enhancing the stability of the underwater vehicle throughout its submerged operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Experimental and LES Studies of Propane–air Premixed Gases in Pipelines Containing Mixed Obstacles Influence of a Modified Weir Profile on Velocity Field and Dissipation Rate in Stepped Spillways: A Comparative Study Using Physical Models and Computational Fluid Dynamics Numerical Analysis of Mechanism on Heat Transfer Deterioration of Hexamethyldisiloxane in a Vertical Upward Tube at Supercritical Pressures Numerical Simulation Study of the Effect of Outlet on the Axial Vortex Separator Numerical Study on the Influence of Plasma Actuation on the Cavitation Characteristics of Hydrofoil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1