{"title":"南海台风 \"哈格比 \"增强了新丰江储层地震活动性","authors":"Peng Zhang , Xinlei Sun , Yandi Zeng , Zhuo Xiao , Runqing Huang","doi":"10.1016/j.eqs.2024.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>There was an evident increase in the number of earthquakes in the Xinfengjiang Reservoir from June to July 2014 after the landing of Typhoon Hagibis. To understand the spatial and temporal evolution of this microseismicity, we built a high-precision earthquake catalog for 2014 and relocated 2275 events using recently developed methods for event picking and catalog construction. Seismicity occurred in the southeastern part of the reservoir, with the preferred fault plane orientation aligned along the Heyuan Fault. The total seismic energy peaked when the typhoon passed through the reservoir, and seismicity correlated with typhoon energy. In contrast, a limited seismic response was observed during the later Typhoon Rammasun. Combining data regarding the water level in the Xinfengjiang Reservoir and seismicity frequency changes in the Taiwan region during these two typhoon events, we suggest that typhoon activity may increase microseism energy by impacting fault stability around the Xinfengjiang Reservoir. Whether a fault can be activated also depends on how close the stress accumulation is to its failure point.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674451924000405/pdfft?md5=d59f6bd3e003672e9e8101e0d9d1f91e&pid=1-s2.0-S1674451924000405-main.pdf","citationCount":"0","resultStr":"{\"title\":\"South China Sea Typhoon Hagibis enhanced Xinfengjiang Reservoir seismicity\",\"authors\":\"Peng Zhang , Xinlei Sun , Yandi Zeng , Zhuo Xiao , Runqing Huang\",\"doi\":\"10.1016/j.eqs.2024.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There was an evident increase in the number of earthquakes in the Xinfengjiang Reservoir from June to July 2014 after the landing of Typhoon Hagibis. To understand the spatial and temporal evolution of this microseismicity, we built a high-precision earthquake catalog for 2014 and relocated 2275 events using recently developed methods for event picking and catalog construction. Seismicity occurred in the southeastern part of the reservoir, with the preferred fault plane orientation aligned along the Heyuan Fault. The total seismic energy peaked when the typhoon passed through the reservoir, and seismicity correlated with typhoon energy. In contrast, a limited seismic response was observed during the later Typhoon Rammasun. Combining data regarding the water level in the Xinfengjiang Reservoir and seismicity frequency changes in the Taiwan region during these two typhoon events, we suggest that typhoon activity may increase microseism energy by impacting fault stability around the Xinfengjiang Reservoir. Whether a fault can be activated also depends on how close the stress accumulation is to its failure point.</p></div>\",\"PeriodicalId\":46333,\"journal\":{\"name\":\"Earthquake Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674451924000405/pdfft?md5=d59f6bd3e003672e9e8101e0d9d1f91e&pid=1-s2.0-S1674451924000405-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674451924000405\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451924000405","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
South China Sea Typhoon Hagibis enhanced Xinfengjiang Reservoir seismicity
There was an evident increase in the number of earthquakes in the Xinfengjiang Reservoir from June to July 2014 after the landing of Typhoon Hagibis. To understand the spatial and temporal evolution of this microseismicity, we built a high-precision earthquake catalog for 2014 and relocated 2275 events using recently developed methods for event picking and catalog construction. Seismicity occurred in the southeastern part of the reservoir, with the preferred fault plane orientation aligned along the Heyuan Fault. The total seismic energy peaked when the typhoon passed through the reservoir, and seismicity correlated with typhoon energy. In contrast, a limited seismic response was observed during the later Typhoon Rammasun. Combining data regarding the water level in the Xinfengjiang Reservoir and seismicity frequency changes in the Taiwan region during these two typhoon events, we suggest that typhoon activity may increase microseism energy by impacting fault stability around the Xinfengjiang Reservoir. Whether a fault can be activated also depends on how close the stress accumulation is to its failure point.
期刊介绍:
Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration.
The topics include, but not limited to, the following
● Seismic sources of all kinds.
● Earth structure at all scales.
● Seismotectonics.
● New methods and theoretical seismology.
● Strong ground motion.
● Seismic phenomena of all kinds.
● Seismic hazards, earthquake forecasting and prediction.
● Seismic instrumentation.
● Significant recent or past seismic events.
● Documentation of recent seismic events or important observations.
● Descriptions of field deployments, new methods, and available software tools.
The types of manuscripts include the following. There is no length requirement, except for the Short Notes.
【Articles】 Original contributions that have not been published elsewhere.
【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages.
【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications.
【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals.
【Toolboxes】 Descriptions of novel numerical methods and associated computer codes.
【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models).
【Opinions】Views on important topics and future directions in earthquake science.
【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.