{"title":"合成用于去除水溶液中重金属和染料的新型复合吸附剂","authors":"L. Mokif, Zahraa H. Obaid, Sarab A. Juda","doi":"10.12911/22998993/187148","DOIUrl":null,"url":null,"abstract":"In the current study, a novel composite (Fe 3 O 4 @MnO 2 @Al 2 O 3 ) was prepared to remove crystal violet dye and cadmium from aqueous solutions. The coprecipitation method was utilized to synthesize the composite. Batch studies were carried out using a contact period of 0.5–3 hours, an initial crystal violet and cadmium content of 50–200 mg/L, an agitation speed of 50–200 rpm, a pH of 4–12, and a composite dosage of 0.2–1.0 g per 50 mL of contaminated solution. The isotherm and kinetics models were formulated the experimental data. XRD, SEM-EDS, and FTIR analyses were utilized for composite characterization. The results revealed that the removal efficacy of crystal violet dye was 99.311% at 1 g of adsorbent, pH 12, 50 mg/L, 1 hour, and 200 rpm. The removal efficacy for cadmium (Cd) is 99.7296% at 1 g of sorbent mass at pH 6, 50 mg/L, 1 hour, and 200 rpm. The outcomes demonstrated that the Langmuir model could accurately depict the sorption of crystal violet dye onto the composite with R 2 (0.9882) and SSE (0.7084). On the basis of Freundlich, the capacity of the composite to reflect cadmium sorption was assessed by its highest R 2 (0.8947) and lowest SSE (8.5149). The pseudo-second-order model is a more realistic way to explain how cadmium and crystal violet dye sorb onto the composite. The results showed that the composite is effective in eliminating target pollutants, since cadmium has a maximum adsorption capacity of 48.5052 mg/g and crystal violet dye has a capacity of 40.9682 mg/g. Therefore, (Fe 3 O 4 @MnO 2 @Al 2 O 3 ) can be used as efficient sorbent for removing Cd and crystal violet dye from synthetic industrial wastewater.","PeriodicalId":15652,"journal":{"name":"Journal of Ecological Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of New Composite Adsorbents for Removing Heavy Metals and Dyes from Aqueous Solution\",\"authors\":\"L. Mokif, Zahraa H. Obaid, Sarab A. Juda\",\"doi\":\"10.12911/22998993/187148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current study, a novel composite (Fe 3 O 4 @MnO 2 @Al 2 O 3 ) was prepared to remove crystal violet dye and cadmium from aqueous solutions. The coprecipitation method was utilized to synthesize the composite. Batch studies were carried out using a contact period of 0.5–3 hours, an initial crystal violet and cadmium content of 50–200 mg/L, an agitation speed of 50–200 rpm, a pH of 4–12, and a composite dosage of 0.2–1.0 g per 50 mL of contaminated solution. The isotherm and kinetics models were formulated the experimental data. XRD, SEM-EDS, and FTIR analyses were utilized for composite characterization. The results revealed that the removal efficacy of crystal violet dye was 99.311% at 1 g of adsorbent, pH 12, 50 mg/L, 1 hour, and 200 rpm. The removal efficacy for cadmium (Cd) is 99.7296% at 1 g of sorbent mass at pH 6, 50 mg/L, 1 hour, and 200 rpm. The outcomes demonstrated that the Langmuir model could accurately depict the sorption of crystal violet dye onto the composite with R 2 (0.9882) and SSE (0.7084). On the basis of Freundlich, the capacity of the composite to reflect cadmium sorption was assessed by its highest R 2 (0.8947) and lowest SSE (8.5149). The pseudo-second-order model is a more realistic way to explain how cadmium and crystal violet dye sorb onto the composite. The results showed that the composite is effective in eliminating target pollutants, since cadmium has a maximum adsorption capacity of 48.5052 mg/g and crystal violet dye has a capacity of 40.9682 mg/g. Therefore, (Fe 3 O 4 @MnO 2 @Al 2 O 3 ) can be used as efficient sorbent for removing Cd and crystal violet dye from synthetic industrial wastewater.\",\"PeriodicalId\":15652,\"journal\":{\"name\":\"Journal of Ecological Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ecological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12911/22998993/187148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12911/22998993/187148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Synthesis of New Composite Adsorbents for Removing Heavy Metals and Dyes from Aqueous Solution
In the current study, a novel composite (Fe 3 O 4 @MnO 2 @Al 2 O 3 ) was prepared to remove crystal violet dye and cadmium from aqueous solutions. The coprecipitation method was utilized to synthesize the composite. Batch studies were carried out using a contact period of 0.5–3 hours, an initial crystal violet and cadmium content of 50–200 mg/L, an agitation speed of 50–200 rpm, a pH of 4–12, and a composite dosage of 0.2–1.0 g per 50 mL of contaminated solution. The isotherm and kinetics models were formulated the experimental data. XRD, SEM-EDS, and FTIR analyses were utilized for composite characterization. The results revealed that the removal efficacy of crystal violet dye was 99.311% at 1 g of adsorbent, pH 12, 50 mg/L, 1 hour, and 200 rpm. The removal efficacy for cadmium (Cd) is 99.7296% at 1 g of sorbent mass at pH 6, 50 mg/L, 1 hour, and 200 rpm. The outcomes demonstrated that the Langmuir model could accurately depict the sorption of crystal violet dye onto the composite with R 2 (0.9882) and SSE (0.7084). On the basis of Freundlich, the capacity of the composite to reflect cadmium sorption was assessed by its highest R 2 (0.8947) and lowest SSE (8.5149). The pseudo-second-order model is a more realistic way to explain how cadmium and crystal violet dye sorb onto the composite. The results showed that the composite is effective in eliminating target pollutants, since cadmium has a maximum adsorption capacity of 48.5052 mg/g and crystal violet dye has a capacity of 40.9682 mg/g. Therefore, (Fe 3 O 4 @MnO 2 @Al 2 O 3 ) can be used as efficient sorbent for removing Cd and crystal violet dye from synthetic industrial wastewater.
期刊介绍:
- Industrial and municipal waste management - Pro-ecological technologies and products - Energy-saving technologies - Environmental landscaping - Environmental monitoring - Climate change in the environment - Sustainable development - Processing and usage of mineral resources - Recovery of valuable materials and fuels - Surface water and groundwater management - Water and wastewater treatment - Smog and air pollution prevention - Protection and reclamation of soils - Reclamation and revitalization of degraded areas - Heavy metals in the environment - Renewable energy technologies - Environmental protection of rural areas - Restoration and protection of urban environment - Prevention of noise in the environment - Environmental life-cycle assessment (LCA) - Simulations and computer modeling for the environment