半管滑雪用气幕产生喷流的创新挡风板设计的数值研究

IF 1.1 4区 工程技术 Q4 MECHANICS Journal of Applied Fluid Mechanics Pub Date : 2024-06-01 DOI:10.47176/jafm.17.6.2400
K. Liu, F. Liu, Q. Liu
{"title":"半管滑雪用气幕产生喷流的创新挡风板设计的数值研究","authors":"K. Liu, F. Liu, Q. Liu","doi":"10.47176/jafm.17.6.2400","DOIUrl":null,"url":null,"abstract":"The sport of half-pipe skiing, characterized by its dynamic maneuvers and high-speed descents, often faces challenges posed by unpredictable wind conditions. To address this, an advanced wind-blocking system incorporating an air curtain capable of generating a jet flow is proposed. This pioneering design offers a dual advantage: the system can significantly reduce the windbreak size in the vertical dimension while maintaining a satisfactory wind-blocking effect. A comprehensive study is conducted to analyze the effects of the height of the windbreak and the jet emission angle from the air curtain. When the jet speed is 40 m/s, a 50° emission angle and a 2 m height of the windbreak result in an optimal wind-blocking effect. Furthermore, delving deeper to understand the underpinnings of this phenomenon, we discovered that a counterrotating vortex pair, which forms in the presence of this jet under crossflow conditions, plays a pivotal role in augmenting the wind-blocking capabilities of the system.","PeriodicalId":49041,"journal":{"name":"Journal of Applied Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of an Innovative Windbreak Design with Jet Flow Generated by an Air Curtain for Half-pipe Skiing\",\"authors\":\"K. Liu, F. Liu, Q. Liu\",\"doi\":\"10.47176/jafm.17.6.2400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sport of half-pipe skiing, characterized by its dynamic maneuvers and high-speed descents, often faces challenges posed by unpredictable wind conditions. To address this, an advanced wind-blocking system incorporating an air curtain capable of generating a jet flow is proposed. This pioneering design offers a dual advantage: the system can significantly reduce the windbreak size in the vertical dimension while maintaining a satisfactory wind-blocking effect. A comprehensive study is conducted to analyze the effects of the height of the windbreak and the jet emission angle from the air curtain. When the jet speed is 40 m/s, a 50° emission angle and a 2 m height of the windbreak result in an optimal wind-blocking effect. Furthermore, delving deeper to understand the underpinnings of this phenomenon, we discovered that a counterrotating vortex pair, which forms in the presence of this jet under crossflow conditions, plays a pivotal role in augmenting the wind-blocking capabilities of the system.\",\"PeriodicalId\":49041,\"journal\":{\"name\":\"Journal of Applied Fluid Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.47176/jafm.17.6.2400\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.47176/jafm.17.6.2400","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

半管滑雪运动以其动态动作和高速下降为特点,经常面临不可预测的风力条件带来的挑战。为此,我们提出了一种先进的阻风系统,该系统包含一个能够产生喷射流的气幕。这种开创性的设计具有双重优势:该系统可以在保持令人满意的挡风效果的同时,大幅缩小垂直方向上的挡风板尺寸。研究人员对挡风板高度和气幕喷射角度的影响进行了综合分析。当喷射速度为 40 米/秒时,50° 的喷射角和 2 米高的挡风板可达到最佳挡风效果。此外,在深入了解这一现象的基础上,我们发现,在横流条件下,在该射流的存在下形成的对旋涡对增强系统的挡风能力起到了关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Investigation of an Innovative Windbreak Design with Jet Flow Generated by an Air Curtain for Half-pipe Skiing
The sport of half-pipe skiing, characterized by its dynamic maneuvers and high-speed descents, often faces challenges posed by unpredictable wind conditions. To address this, an advanced wind-blocking system incorporating an air curtain capable of generating a jet flow is proposed. This pioneering design offers a dual advantage: the system can significantly reduce the windbreak size in the vertical dimension while maintaining a satisfactory wind-blocking effect. A comprehensive study is conducted to analyze the effects of the height of the windbreak and the jet emission angle from the air curtain. When the jet speed is 40 m/s, a 50° emission angle and a 2 m height of the windbreak result in an optimal wind-blocking effect. Furthermore, delving deeper to understand the underpinnings of this phenomenon, we discovered that a counterrotating vortex pair, which forms in the presence of this jet under crossflow conditions, plays a pivotal role in augmenting the wind-blocking capabilities of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Fluid Mechanics
Journal of Applied Fluid Mechanics THERMODYNAMICS-MECHANICS
CiteScore
2.00
自引率
20.00%
发文量
138
审稿时长
>12 weeks
期刊介绍: The Journal of Applied Fluid Mechanics (JAFM) is an international, peer-reviewed journal which covers a wide range of theoretical, numerical and experimental aspects in fluid mechanics. The emphasis is on the applications in different engineering fields rather than on pure mathematical or physical aspects in fluid mechanics. Although many high quality journals pertaining to different aspects of fluid mechanics presently exist, research in the field is rapidly escalating. The motivation for this new fluid mechanics journal is driven by the following points: (1) there is a need to have an e-journal accessible to all fluid mechanics researchers, (2) scientists from third- world countries need a venue that does not incur publication costs, (3) quality papers deserve rapid and fast publication through an efficient peer review process, and (4) an outlet is needed for rapid dissemination of fluid mechanics conferences held in Asian countries. Pertaining to this latter point, there presently exist some excellent conferences devoted to the promotion of fluid mechanics in the region such as the Asian Congress of Fluid Mechanics which began in 1980 and nominally takes place in one of the Asian countries every two years. We hope that the proposed journal provides and additional impetus for promoting applied fluids research and associated activities in this continent. The journal is under the umbrella of the Physics Society of Iran with the collaboration of Isfahan University of Technology (IUT) .
期刊最新文献
Experimental and LES Studies of Propane–air Premixed Gases in Pipelines Containing Mixed Obstacles Influence of a Modified Weir Profile on Velocity Field and Dissipation Rate in Stepped Spillways: A Comparative Study Using Physical Models and Computational Fluid Dynamics Numerical Analysis of Mechanism on Heat Transfer Deterioration of Hexamethyldisiloxane in a Vertical Upward Tube at Supercritical Pressures Numerical Simulation Study of the Effect of Outlet on the Axial Vortex Separator Numerical Study on the Influence of Plasma Actuation on the Cavitation Characteristics of Hydrofoil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1