温度对轴向压缩薄壁复合材料型材屈曲特性的影响

K. Falkowicz, Michał Kuciej, Łukasz Świech
{"title":"温度对轴向压缩薄壁复合材料型材屈曲特性的影响","authors":"K. Falkowicz, Michał Kuciej, Łukasz Świech","doi":"10.12913/22998624/186607","DOIUrl":null,"url":null,"abstract":"This study investigates the influence of temperature variations on the buckling properties of thin-walled omega-pro - files fabricated from carbon-epoxy composite materials. Utilizing a MTS testing machine, compression tests were conducted on these profiles at temperatures ranging from -20°C to 80°C, in 20°C increments. The primary objective was to assess how temperature fluctuations impact the buckling load and load-bearing capacity of these composite profiles under axial compression. The experimental setup allowed for precise measurement of load-displacement and load-deflection characteristics, and the critical load at which buckling initiation occurred. Observations revealed that the buckling resistance of the profiles exhibited a complex dependence on temperature. At lower temperatures, the composite material demonstrated enhanced stiffness and strength, marginally increasing buckling resistance. Conversely, at elevated temperatures, a noticeable degradation in mechanical properties was observed, leading to a reduced buckling load and altered failure modes. To complement the experimental findings, a comprehensive finite element (FE) analysis was conducted for sample in room temperature. The FE model, developed to replicate the experimental conditions closely, employed an eigenvalue-based approach to predict the buckling initiation and progression accurately. The presented results are the results of only preliminary tests and they will be expand about more samples number as well as to determine material properties for various temperatures.","PeriodicalId":517116,"journal":{"name":"Advances in Science and Technology Research Journal","volume":"99 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature Effect on Buckling Properties of Thin-Walled Composite Profile Subjected to Axial Compression\",\"authors\":\"K. Falkowicz, Michał Kuciej, Łukasz Świech\",\"doi\":\"10.12913/22998624/186607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the influence of temperature variations on the buckling properties of thin-walled omega-pro - files fabricated from carbon-epoxy composite materials. Utilizing a MTS testing machine, compression tests were conducted on these profiles at temperatures ranging from -20°C to 80°C, in 20°C increments. The primary objective was to assess how temperature fluctuations impact the buckling load and load-bearing capacity of these composite profiles under axial compression. The experimental setup allowed for precise measurement of load-displacement and load-deflection characteristics, and the critical load at which buckling initiation occurred. Observations revealed that the buckling resistance of the profiles exhibited a complex dependence on temperature. At lower temperatures, the composite material demonstrated enhanced stiffness and strength, marginally increasing buckling resistance. Conversely, at elevated temperatures, a noticeable degradation in mechanical properties was observed, leading to a reduced buckling load and altered failure modes. To complement the experimental findings, a comprehensive finite element (FE) analysis was conducted for sample in room temperature. The FE model, developed to replicate the experimental conditions closely, employed an eigenvalue-based approach to predict the buckling initiation and progression accurately. The presented results are the results of only preliminary tests and they will be expand about more samples number as well as to determine material properties for various temperatures.\",\"PeriodicalId\":517116,\"journal\":{\"name\":\"Advances in Science and Technology Research Journal\",\"volume\":\"99 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Science and Technology Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12913/22998624/186607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12913/22998624/186607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了温度变化对碳-环氧复合材料制成的薄壁Ω-pro-锉弯曲性能的影响。利用 MTS 试验机,以 20°C 为增量,在 -20°C 至 80°C 的温度范围内对这些型材进行了压缩试验。主要目的是评估温度波动如何影响这些复合材料型材在轴向压缩下的屈曲载荷和承载能力。实验装置可以精确测量载荷-位移和载荷-挠度特性,以及发生屈曲的临界载荷。观察结果表明,型材的抗屈曲性与温度有着复杂的关系。在较低温度下,复合材料的刚度和强度增强,抗屈曲性略有提高。相反,在温度升高时,机械性能明显下降,导致屈曲载荷降低和失效模式改变。为了补充实验结果,我们对室温下的样品进行了全面的有限元(FE)分析。该有限元分析模型采用了基于特征值的方法,以准确预测屈曲的开始和发展。以上结果只是初步试验的结果,今后还将对更多的样品数量进行扩展,并确定不同温度下的材料特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temperature Effect on Buckling Properties of Thin-Walled Composite Profile Subjected to Axial Compression
This study investigates the influence of temperature variations on the buckling properties of thin-walled omega-pro - files fabricated from carbon-epoxy composite materials. Utilizing a MTS testing machine, compression tests were conducted on these profiles at temperatures ranging from -20°C to 80°C, in 20°C increments. The primary objective was to assess how temperature fluctuations impact the buckling load and load-bearing capacity of these composite profiles under axial compression. The experimental setup allowed for precise measurement of load-displacement and load-deflection characteristics, and the critical load at which buckling initiation occurred. Observations revealed that the buckling resistance of the profiles exhibited a complex dependence on temperature. At lower temperatures, the composite material demonstrated enhanced stiffness and strength, marginally increasing buckling resistance. Conversely, at elevated temperatures, a noticeable degradation in mechanical properties was observed, leading to a reduced buckling load and altered failure modes. To complement the experimental findings, a comprehensive finite element (FE) analysis was conducted for sample in room temperature. The FE model, developed to replicate the experimental conditions closely, employed an eigenvalue-based approach to predict the buckling initiation and progression accurately. The presented results are the results of only preliminary tests and they will be expand about more samples number as well as to determine material properties for various temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of the Electrode Extension on the Geometry of Parts Made of 316LSi Steel by Wire Arc Additive Manufacturing Method (WAAM) Adsorption Equilibrium Studies on the Example of Nitrate Removal Onto Char Produced from Waste Tires Testing of the Light Transmittance of Industrial Varnishes Open Source Intelligence Opportunities and Challenges: a Review Susceptibility to Stress Corrosion Cracking of Selected Amorphous Polymer Materials in a Sea-Water Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1