基于 ANFIS 的优化技术,在使用传统 PI 的感应电机驱动中实现每安培最大扭矩

G. M. Rao, Mamidala Vijay Karthik, Annavarapu Ananda Kumar, Chava Sunil Kumar, Tummeti Parameshwar, Abbaraju Hima Bindu
{"title":"基于 ANFIS 的优化技术,在使用传统 PI 的感应电机驱动中实现每安培最大扭矩","authors":"G. M. Rao, Mamidala Vijay Karthik, Annavarapu Ananda Kumar, Chava Sunil Kumar, Tummeti Parameshwar, Abbaraju Hima Bindu","doi":"10.11591/ijape.v13.i2.pp320-327","DOIUrl":null,"url":null,"abstract":"This research presents an innovative approach to controlling the speed of an induction motor drive by utilizing a combination of neural networks and fuzzy inference systems (ANFIS). The study focuses on computing the rotor's magnetic flux while considering different overshoot and settling criteria for torque and motor speed. The goal is to optimize torque per ampere and generate the necessary torque. The proposed ANFIS-based torque-per-ampere control technique offers a distinctive method applicable to a static induction motor model. This method allows for an increase in stator current while maintaining flexibility and individuality in motor control strategies. It compares various motor vector control methods, specifically focusing on strategies to reduce torque ripple. These strategies include adaptive ANFIS, fuzzy logic control (FLC), and proportional-integral (PI) control. The research highlights the effectiveness of an adaptive ANFIS controller in achieving the most significant reduction in torque ripple within the induction motor system. This proposed problem identification sets the stage for exploring and developing solutions to enhance the performance and efficiency of induction motor drives.","PeriodicalId":340072,"journal":{"name":"International Journal of Applied Power Engineering (IJAPE)","volume":"31 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANFIS-based optimisation for achieving the maximum torque per ampere in induction motor drive with conventional PI\",\"authors\":\"G. M. Rao, Mamidala Vijay Karthik, Annavarapu Ananda Kumar, Chava Sunil Kumar, Tummeti Parameshwar, Abbaraju Hima Bindu\",\"doi\":\"10.11591/ijape.v13.i2.pp320-327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research presents an innovative approach to controlling the speed of an induction motor drive by utilizing a combination of neural networks and fuzzy inference systems (ANFIS). The study focuses on computing the rotor's magnetic flux while considering different overshoot and settling criteria for torque and motor speed. The goal is to optimize torque per ampere and generate the necessary torque. The proposed ANFIS-based torque-per-ampere control technique offers a distinctive method applicable to a static induction motor model. This method allows for an increase in stator current while maintaining flexibility and individuality in motor control strategies. It compares various motor vector control methods, specifically focusing on strategies to reduce torque ripple. These strategies include adaptive ANFIS, fuzzy logic control (FLC), and proportional-integral (PI) control. The research highlights the effectiveness of an adaptive ANFIS controller in achieving the most significant reduction in torque ripple within the induction motor system. This proposed problem identification sets the stage for exploring and developing solutions to enhance the performance and efficiency of induction motor drives.\",\"PeriodicalId\":340072,\"journal\":{\"name\":\"International Journal of Applied Power Engineering (IJAPE)\",\"volume\":\"31 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Power Engineering (IJAPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijape.v13.i2.pp320-327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering (IJAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijape.v13.i2.pp320-327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种利用神经网络和模糊推理系统(ANFIS)组合控制感应电机驱动器速度的创新方法。研究重点是计算转子的磁通量,同时考虑扭矩和电机速度的不同过冲和稳定标准。目标是优化每安培转矩并产生必要的转矩。所提出的基于 ANFIS 的每安培转矩控制技术提供了一种适用于静态感应电机模型的独特方法。这种方法既能增加定子电流,又能保持电机控制策略的灵活性和个性化。它比较了各种电机矢量控制方法,尤其侧重于减少转矩纹波的策略。这些策略包括自适应 ANFIS、模糊逻辑控制 (FLC) 和比例积分 (PI) 控制。研究强调了自适应 ANFIS 控制器在感应电机系统中实现最显著降低转矩纹波的有效性。所提出的问题识别为探索和开发提高感应电机驱动器性能和效率的解决方案奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANFIS-based optimisation for achieving the maximum torque per ampere in induction motor drive with conventional PI
This research presents an innovative approach to controlling the speed of an induction motor drive by utilizing a combination of neural networks and fuzzy inference systems (ANFIS). The study focuses on computing the rotor's magnetic flux while considering different overshoot and settling criteria for torque and motor speed. The goal is to optimize torque per ampere and generate the necessary torque. The proposed ANFIS-based torque-per-ampere control technique offers a distinctive method applicable to a static induction motor model. This method allows for an increase in stator current while maintaining flexibility and individuality in motor control strategies. It compares various motor vector control methods, specifically focusing on strategies to reduce torque ripple. These strategies include adaptive ANFIS, fuzzy logic control (FLC), and proportional-integral (PI) control. The research highlights the effectiveness of an adaptive ANFIS controller in achieving the most significant reduction in torque ripple within the induction motor system. This proposed problem identification sets the stage for exploring and developing solutions to enhance the performance and efficiency of induction motor drives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fundamental frequency switching strategies of a seven level hybrid cascaded H-bridge multilevel inverter Recent research and developments of degradation assessment and its diagnosis methods for solar PV plant: a review Investigating the effects of corrosion parameters on the surface resistivity of transformer’s insulating paper using a two-level factorial design Maximum power optimization of a direct-drive wind turbine connected to PMSG using multi-objective genetic algorithm A wireless-power and data-transfer using inductive RF link and ASK modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1