Kui Xu, Hu Feng, Haihang Zhang, Chenfei He, Huifang Kang, Tanglong Yuan, Lei Shi, Chikai Zhou, Guoying Hua, Yaqi Cao, Zhenrui Zuo, Erwei Zuo
{"title":"在结构引导下发现与序列上下文无关的高效胞苷脱氨酶","authors":"Kui Xu, Hu Feng, Haihang Zhang, Chenfei He, Huifang Kang, Tanglong Yuan, Lei Shi, Chikai Zhou, Guoying Hua, Yaqi Cao, Zhenrui Zuo, Erwei Zuo","doi":"10.1038/s41551-024-01220-8","DOIUrl":null,"url":null,"abstract":"<p>The applicability of cytosine base editors is hindered by their dependence on sequence context and by off-target effects. Here, by using AlphaFold2 to predict the three-dimensional structure of 1,483 cytidine deaminases and by experimentally characterizing representative deaminases (selected from each structural cluster after categorizing them via partitional clustering), we report the discovery of a few deaminases with high editing efficiencies, diverse editing windows and increased ratios of on-target to off-target effects. Specifically, several deaminases induced C-to-T conversions with comparable efficiency at AC/TC/CC/GC sites, the deaminases could introduce stop codons in single-copy and multi-copy genes in mammalian cells without double-strand breaks, and some residue conversions at predicted DNA-interacting sites reduced off-target effects. Structure-based generative machine learning could be further leveraged to expand the applicability of base editors in gene therapies.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"65 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-guided discovery of highly efficient cytidine deaminases with sequence-context independence\",\"authors\":\"Kui Xu, Hu Feng, Haihang Zhang, Chenfei He, Huifang Kang, Tanglong Yuan, Lei Shi, Chikai Zhou, Guoying Hua, Yaqi Cao, Zhenrui Zuo, Erwei Zuo\",\"doi\":\"10.1038/s41551-024-01220-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The applicability of cytosine base editors is hindered by their dependence on sequence context and by off-target effects. Here, by using AlphaFold2 to predict the three-dimensional structure of 1,483 cytidine deaminases and by experimentally characterizing representative deaminases (selected from each structural cluster after categorizing them via partitional clustering), we report the discovery of a few deaminases with high editing efficiencies, diverse editing windows and increased ratios of on-target to off-target effects. Specifically, several deaminases induced C-to-T conversions with comparable efficiency at AC/TC/CC/GC sites, the deaminases could introduce stop codons in single-copy and multi-copy genes in mammalian cells without double-strand breaks, and some residue conversions at predicted DNA-interacting sites reduced off-target effects. Structure-based generative machine learning could be further leveraged to expand the applicability of base editors in gene therapies.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-024-01220-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01220-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Structure-guided discovery of highly efficient cytidine deaminases with sequence-context independence
The applicability of cytosine base editors is hindered by their dependence on sequence context and by off-target effects. Here, by using AlphaFold2 to predict the three-dimensional structure of 1,483 cytidine deaminases and by experimentally characterizing representative deaminases (selected from each structural cluster after categorizing them via partitional clustering), we report the discovery of a few deaminases with high editing efficiencies, diverse editing windows and increased ratios of on-target to off-target effects. Specifically, several deaminases induced C-to-T conversions with comparable efficiency at AC/TC/CC/GC sites, the deaminases could introduce stop codons in single-copy and multi-copy genes in mammalian cells without double-strand breaks, and some residue conversions at predicted DNA-interacting sites reduced off-target effects. Structure-based generative machine learning could be further leveraged to expand the applicability of base editors in gene therapies.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.