两种两栖动物在重复的城乡梯度中遗传分化或适应的证据有限。

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2024-06-03 DOI:10.1111/eva.13700
W. Babik, M. Marszałek, K. Dudek, B. Antunes, G. Palomar, B. Zając, A. Taugbøl, M. Pabijan
{"title":"两种两栖动物在重复的城乡梯度中遗传分化或适应的证据有限。","authors":"W. Babik,&nbsp;M. Marszałek,&nbsp;K. Dudek,&nbsp;B. Antunes,&nbsp;G. Palomar,&nbsp;B. Zając,&nbsp;A. Taugbøl,&nbsp;M. Pabijan","doi":"10.1111/eva.13700","DOIUrl":null,"url":null,"abstract":"<p>Urbanization leads to complex environmental changes and poses multiple challenges to organisms. Amphibians are highly susceptible to the effects of urbanization, with land use conversion, habitat destruction, and degradation ranked as the most significant threats. Consequently, amphibians are declining in urban areas, in both population numbers and abundance, however, the effect of urbanization on population genetic parameters remains unclear. Here, we studied the genomic response to urbanization in two widespread European species, the common toad <i>Bufo bufo</i> (26 localities, 480 individuals), and the smooth newt <i>Lissotriton vulgaris</i> (30 localities, 516 individuals) in three geographic regions: southern and northern Poland and southern Norway. We assessed genome-wide SNP variation using RADseq (ca. 42 and 552 thousand SNPs in toads and newts, respectively) and adaptively relevant major histocompatibility complex (MHC) class I and II genes. The results linked most of the genetic differentiation in both marker types to regional (latitudinal) effects, which also correspond to historical biogeography. Further, we did not find any association between genetic differentiation and level of urbanization at local scales for either species. However, urban smooth newts, but not toads, have lower levels of within-population genome-wide diversity, suggesting higher susceptibility to the negative effects of urbanization. A decreasing level of genetic diversity linked to increasing urbanization was also found for MHC II in smooth newts, while the relationship between MHC class I diversity and urbanization differed between geographic regions. We did not find any effects of urbanization on MHC diversity in the toad populations. Although two genetic environment association analyses of genome-wide data, LFMM and BayPass, revealed numerous (219 in <i>B. bufo</i> and 7040 in <i>L. vulgaris</i>) SNPs statistically associated with urbanization, we found a marked lack of repeatability between geographic regions, suggesting a complex and multifaceted response to natural selection elicited by life in the city.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146147/pdf/","citationCount":"0","resultStr":"{\"title\":\"Limited evidence for genetic differentiation or adaptation in two amphibian species across replicated rural–urban gradients\",\"authors\":\"W. Babik,&nbsp;M. Marszałek,&nbsp;K. Dudek,&nbsp;B. Antunes,&nbsp;G. Palomar,&nbsp;B. Zając,&nbsp;A. Taugbøl,&nbsp;M. Pabijan\",\"doi\":\"10.1111/eva.13700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Urbanization leads to complex environmental changes and poses multiple challenges to organisms. Amphibians are highly susceptible to the effects of urbanization, with land use conversion, habitat destruction, and degradation ranked as the most significant threats. Consequently, amphibians are declining in urban areas, in both population numbers and abundance, however, the effect of urbanization on population genetic parameters remains unclear. Here, we studied the genomic response to urbanization in two widespread European species, the common toad <i>Bufo bufo</i> (26 localities, 480 individuals), and the smooth newt <i>Lissotriton vulgaris</i> (30 localities, 516 individuals) in three geographic regions: southern and northern Poland and southern Norway. We assessed genome-wide SNP variation using RADseq (ca. 42 and 552 thousand SNPs in toads and newts, respectively) and adaptively relevant major histocompatibility complex (MHC) class I and II genes. The results linked most of the genetic differentiation in both marker types to regional (latitudinal) effects, which also correspond to historical biogeography. Further, we did not find any association between genetic differentiation and level of urbanization at local scales for either species. However, urban smooth newts, but not toads, have lower levels of within-population genome-wide diversity, suggesting higher susceptibility to the negative effects of urbanization. A decreasing level of genetic diversity linked to increasing urbanization was also found for MHC II in smooth newts, while the relationship between MHC class I diversity and urbanization differed between geographic regions. We did not find any effects of urbanization on MHC diversity in the toad populations. Although two genetic environment association analyses of genome-wide data, LFMM and BayPass, revealed numerous (219 in <i>B. bufo</i> and 7040 in <i>L. vulgaris</i>) SNPs statistically associated with urbanization, we found a marked lack of repeatability between geographic regions, suggesting a complex and multifaceted response to natural selection elicited by life in the city.</p>\",\"PeriodicalId\":168,\"journal\":{\"name\":\"Evolutionary Applications\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11146147/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eva.13700\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.13700","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

城市化导致了复杂的环境变化,给生物带来了多重挑战。两栖动物极易受到城市化的影响,其中土地用途转换、栖息地破坏和退化是最主要的威胁。因此,两栖动物在城市地区的数量和丰度都在下降,但城市化对种群遗传参数的影响仍不清楚。在这里,我们研究了波兰南部、北部和挪威南部三个地理区域的两种广泛分布的欧洲物种--普通蟾蜍(26 个地点,480 个个体)和平滑蝾螈(30 个地点,516 个个体)--的基因组对城市化的反应。我们利用 RADseq(在蟾蜍和蝾螈中分别有大约 42 和 55.2 万个 SNP)以及与适应性相关的主要组织相容性复合体(MHC)I 类和 II 类基因评估了全基因组 SNP 变异。结果表明,这两种标记类型的遗传分化大多与区域(纬度)效应有关,这也与历史生物地理学相吻合。此外,我们没有发现任何一个物种的遗传分化与当地尺度的城市化水平有关。然而,城市平滑蝾螈(而非蟾蜍)种群内全基因组多样性水平较低,这表明它们更容易受到城市化的负面影响。在平滑蝾螈的 MHC II 中,我们还发现遗传多样性水平的下降与城市化的加剧有关,而 MHC I 类多样性与城市化之间的关系则因地理区域而异。在蟾蜍种群中,我们没有发现城市化对 MHC 多样性有任何影响。尽管对全基因组数据进行的两项遗传环境关联分析(LFMM 和 BayPass)发现了许多(B. bufo 的 219 个和 L. vulgaris 的 7040 个)与城市化有统计学关联的 SNPs,但我们发现不同地理区域之间明显缺乏重复性,这表明城市生活对自然选择的反应是复杂和多方面的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Limited evidence for genetic differentiation or adaptation in two amphibian species across replicated rural–urban gradients

Urbanization leads to complex environmental changes and poses multiple challenges to organisms. Amphibians are highly susceptible to the effects of urbanization, with land use conversion, habitat destruction, and degradation ranked as the most significant threats. Consequently, amphibians are declining in urban areas, in both population numbers and abundance, however, the effect of urbanization on population genetic parameters remains unclear. Here, we studied the genomic response to urbanization in two widespread European species, the common toad Bufo bufo (26 localities, 480 individuals), and the smooth newt Lissotriton vulgaris (30 localities, 516 individuals) in three geographic regions: southern and northern Poland and southern Norway. We assessed genome-wide SNP variation using RADseq (ca. 42 and 552 thousand SNPs in toads and newts, respectively) and adaptively relevant major histocompatibility complex (MHC) class I and II genes. The results linked most of the genetic differentiation in both marker types to regional (latitudinal) effects, which also correspond to historical biogeography. Further, we did not find any association between genetic differentiation and level of urbanization at local scales for either species. However, urban smooth newts, but not toads, have lower levels of within-population genome-wide diversity, suggesting higher susceptibility to the negative effects of urbanization. A decreasing level of genetic diversity linked to increasing urbanization was also found for MHC II in smooth newts, while the relationship between MHC class I diversity and urbanization differed between geographic regions. We did not find any effects of urbanization on MHC diversity in the toad populations. Although two genetic environment association analyses of genome-wide data, LFMM and BayPass, revealed numerous (219 in B. bufo and 7040 in L. vulgaris) SNPs statistically associated with urbanization, we found a marked lack of repeatability between geographic regions, suggesting a complex and multifaceted response to natural selection elicited by life in the city.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Tracking the North American Asian Longhorned Beetle Invasion With Genomics Prioritizing Conservation Areas for the Hyacinth Macaw (Anodorhynchus hyacinthinus) in Brazil From Low-Coverage Genomic Data Genomic Data Support the Revision of Provenance Regions Delimitation for Scots Pine Sex Pheromone Mediates Resource Partitioning Between Drosophila melanogaster and D. suzukii Estimating Demographic Parameters for Bearded Seals, Erignathus barbatus, in Alaska Using Close-Kin Mark-Recapture Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1