Yoon Kyoung Choi, Linqing Feng, Won-Ki Jeong, Jinhyun Kim
{"title":"中尺度的连接信息学:绘制大脑连接图的图像处理和分析的最新进展。","authors":"Yoon Kyoung Choi, Linqing Feng, Won-Ki Jeong, Jinhyun Kim","doi":"10.1186/s40708-024-00228-9","DOIUrl":null,"url":null,"abstract":"<p><p>Mapping neural connections within the brain has been a fundamental goal in neuroscience to understand better its functions and changes that follow aging and diseases. Developments in imaging technology, such as microscopy and labeling tools, have allowed researchers to visualize this connectivity through high-resolution brain-wide imaging. With this, image processing and analysis have become more crucial. However, despite the wealth of neural images generated, access to an integrated image processing and analysis pipeline to process these data is challenging due to scattered information on available tools and methods. To map the neural connections, registration to atlases and feature extraction through segmentation and signal detection are necessary. In this review, our goal is to provide an updated overview of recent advances in these image-processing methods, with a particular focus on fluorescent images of the mouse brain. Our goal is to outline a pathway toward an integrated image-processing pipeline tailored for connecto-informatics. An integrated workflow of these image processing will facilitate researchers' approach to mapping brain connectivity to better understand complex brain networks and their underlying brain functions. By highlighting the image-processing tools available for fluroscent imaging of the mouse brain, this review will contribute to a deeper grasp of connecto-informatics, paving the way for better comprehension of brain connectivity and its implications.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150223/pdf/","citationCount":"0","resultStr":"{\"title\":\"Connecto-informatics at the mesoscale: current advances in image processing and analysis for mapping the brain connectivity.\",\"authors\":\"Yoon Kyoung Choi, Linqing Feng, Won-Ki Jeong, Jinhyun Kim\",\"doi\":\"10.1186/s40708-024-00228-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mapping neural connections within the brain has been a fundamental goal in neuroscience to understand better its functions and changes that follow aging and diseases. Developments in imaging technology, such as microscopy and labeling tools, have allowed researchers to visualize this connectivity through high-resolution brain-wide imaging. With this, image processing and analysis have become more crucial. However, despite the wealth of neural images generated, access to an integrated image processing and analysis pipeline to process these data is challenging due to scattered information on available tools and methods. To map the neural connections, registration to atlases and feature extraction through segmentation and signal detection are necessary. In this review, our goal is to provide an updated overview of recent advances in these image-processing methods, with a particular focus on fluorescent images of the mouse brain. Our goal is to outline a pathway toward an integrated image-processing pipeline tailored for connecto-informatics. An integrated workflow of these image processing will facilitate researchers' approach to mapping brain connectivity to better understand complex brain networks and their underlying brain functions. By highlighting the image-processing tools available for fluroscent imaging of the mouse brain, this review will contribute to a deeper grasp of connecto-informatics, paving the way for better comprehension of brain connectivity and its implications.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"11 1\",\"pages\":\"15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11150223/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00228-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00228-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Connecto-informatics at the mesoscale: current advances in image processing and analysis for mapping the brain connectivity.
Mapping neural connections within the brain has been a fundamental goal in neuroscience to understand better its functions and changes that follow aging and diseases. Developments in imaging technology, such as microscopy and labeling tools, have allowed researchers to visualize this connectivity through high-resolution brain-wide imaging. With this, image processing and analysis have become more crucial. However, despite the wealth of neural images generated, access to an integrated image processing and analysis pipeline to process these data is challenging due to scattered information on available tools and methods. To map the neural connections, registration to atlases and feature extraction through segmentation and signal detection are necessary. In this review, our goal is to provide an updated overview of recent advances in these image-processing methods, with a particular focus on fluorescent images of the mouse brain. Our goal is to outline a pathway toward an integrated image-processing pipeline tailored for connecto-informatics. An integrated workflow of these image processing will facilitate researchers' approach to mapping brain connectivity to better understand complex brain networks and their underlying brain functions. By highlighting the image-processing tools available for fluroscent imaging of the mouse brain, this review will contribute to a deeper grasp of connecto-informatics, paving the way for better comprehension of brain connectivity and its implications.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing