Yueyue Fei , Zhonggui Bao , Qin Wang , Yihong Zhu , Jigang Lu , Linyue Ouyang , Quiqin Hu , Yan Zhou , Liangbiao Chen
{"title":"CRISPR/Cas9诱导的LEAP2和GHSR1a基因敲除突变斑马鱼表现出生长异常和脂质代谢障碍。","authors":"Yueyue Fei , Zhonggui Bao , Qin Wang , Yihong Zhu , Jigang Lu , Linyue Ouyang , Quiqin Hu , Yan Zhou , Liangbiao Chen","doi":"10.1016/j.ygcen.2024.114563","DOIUrl":null,"url":null,"abstract":"<div><p>Investigating the principles of fish fat deposition and conducting related research are current focal points in fish nutrition. This study explores the endocrine regulation of LEAP2 and GHSR1a in zebrafish by constructing mutant<!--> <!-->models and<!--> <!-->examining the effects of the endocrine factors LEAP2 and its receptor GHSR1a on zebrafish growth, feeding, and liver fat deposition. Compared to the wild type (WT), the mutation of LEAP2 results in increased feeding and decreased swimming in zebrafish. The impact is more pronounced in adult female zebrafish, characterized by increased weight, length, width, and accumulation of lipid droplets in the liver.<!--> <!-->In<!--> <!-->contrast, deficiency in GHSR1a significantly reduces the growth of male zebrafish and markedly decreases liver fat deposition.<!--> <!-->These research findings indicate the crucial roles of LEAP2 and GHSR1a in zebrafish feeding, growth, and intracellular fat metabolism. This study, for the first time, investigated the endocrine metabolic regulation functions of LEAP2 and GHSR1a in the model organism zebrafish, providing initial insights into their effects and potential mechanisms on zebrafish fat metabolism.</p></div>","PeriodicalId":12582,"journal":{"name":"General and comparative endocrinology","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9-induced LEAP2 and GHSR1a knockout mutant zebrafish displayed abnormal growth and impaired lipid metabolism\",\"authors\":\"Yueyue Fei , Zhonggui Bao , Qin Wang , Yihong Zhu , Jigang Lu , Linyue Ouyang , Quiqin Hu , Yan Zhou , Liangbiao Chen\",\"doi\":\"10.1016/j.ygcen.2024.114563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Investigating the principles of fish fat deposition and conducting related research are current focal points in fish nutrition. This study explores the endocrine regulation of LEAP2 and GHSR1a in zebrafish by constructing mutant<!--> <!-->models and<!--> <!-->examining the effects of the endocrine factors LEAP2 and its receptor GHSR1a on zebrafish growth, feeding, and liver fat deposition. Compared to the wild type (WT), the mutation of LEAP2 results in increased feeding and decreased swimming in zebrafish. The impact is more pronounced in adult female zebrafish, characterized by increased weight, length, width, and accumulation of lipid droplets in the liver.<!--> <!-->In<!--> <!-->contrast, deficiency in GHSR1a significantly reduces the growth of male zebrafish and markedly decreases liver fat deposition.<!--> <!-->These research findings indicate the crucial roles of LEAP2 and GHSR1a in zebrafish feeding, growth, and intracellular fat metabolism. This study, for the first time, investigated the endocrine metabolic regulation functions of LEAP2 and GHSR1a in the model organism zebrafish, providing initial insights into their effects and potential mechanisms on zebrafish fat metabolism.</p></div>\",\"PeriodicalId\":12582,\"journal\":{\"name\":\"General and comparative endocrinology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"General and comparative endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016648024001242\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"General and comparative endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016648024001242","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
CRISPR/Cas9-induced LEAP2 and GHSR1a knockout mutant zebrafish displayed abnormal growth and impaired lipid metabolism
Investigating the principles of fish fat deposition and conducting related research are current focal points in fish nutrition. This study explores the endocrine regulation of LEAP2 and GHSR1a in zebrafish by constructing mutant models and examining the effects of the endocrine factors LEAP2 and its receptor GHSR1a on zebrafish growth, feeding, and liver fat deposition. Compared to the wild type (WT), the mutation of LEAP2 results in increased feeding and decreased swimming in zebrafish. The impact is more pronounced in adult female zebrafish, characterized by increased weight, length, width, and accumulation of lipid droplets in the liver. In contrast, deficiency in GHSR1a significantly reduces the growth of male zebrafish and markedly decreases liver fat deposition. These research findings indicate the crucial roles of LEAP2 and GHSR1a in zebrafish feeding, growth, and intracellular fat metabolism. This study, for the first time, investigated the endocrine metabolic regulation functions of LEAP2 and GHSR1a in the model organism zebrafish, providing initial insights into their effects and potential mechanisms on zebrafish fat metabolism.
期刊介绍:
General and Comparative Endocrinology publishes articles concerned with the many complexities of vertebrate and invertebrate endocrine systems at the sub-molecular, molecular, cellular and organismal levels of analysis.