{"title":"通过 X 射线计算机断层扫描和图像处理评估瞬态碰撞下的苹果抗挫伤性","authors":"Yin Huang, Zhenwei Liang","doi":"10.1016/j.biosystemseng.2024.05.009","DOIUrl":null,"url":null,"abstract":"<div><p>To evaluate the resistance of apples to bruising under transient impact loads, a pendulum device was initially employed to gather collision data. Subsequently, an image acquisition and processing system was utilised to compute the apple surface bruise area, and X-ray computed tomography technology was utilised to precisely calculate the bruise volume. Based on the CT image and bruise area image analysis, the difference between bruised area and normal tissue on the apple after collision, and effects of impact energy on apple bruising volume and bruise area has been elaborated in detail. Results analysis revealed a general increase in both bruise volume and bruise area with escalating impact energy, and there is a strong correspondence between bruise volume and bruise area across different storage days and impact energies. The relationship between bruise volume and bruise area under different storage duration were also established. On the base of bruise resistance index (BRI) model utilising impact energy and bruise volume as variables, those analysis led to the establishment of a new bruise resistance index (BRI*) model employing impact energy and bruise area as independent variables. The effectiveness of BRI* model in assessing apple bruise resistance was demonstrated by comparing the corresponding relative error for bruise thresholds of BRI and BRI* under the same condition. The relative error ≤3.3% underscores the accuracy of the new model and proves the proposed BRI* model to be an efficient and rapid tool for assessing the degree of apple bruising.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of apple bruise resistance under transient collisions through X-ray computed tomography and image processing\",\"authors\":\"Yin Huang, Zhenwei Liang\",\"doi\":\"10.1016/j.biosystemseng.2024.05.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To evaluate the resistance of apples to bruising under transient impact loads, a pendulum device was initially employed to gather collision data. Subsequently, an image acquisition and processing system was utilised to compute the apple surface bruise area, and X-ray computed tomography technology was utilised to precisely calculate the bruise volume. Based on the CT image and bruise area image analysis, the difference between bruised area and normal tissue on the apple after collision, and effects of impact energy on apple bruising volume and bruise area has been elaborated in detail. Results analysis revealed a general increase in both bruise volume and bruise area with escalating impact energy, and there is a strong correspondence between bruise volume and bruise area across different storage days and impact energies. The relationship between bruise volume and bruise area under different storage duration were also established. On the base of bruise resistance index (BRI) model utilising impact energy and bruise volume as variables, those analysis led to the establishment of a new bruise resistance index (BRI*) model employing impact energy and bruise area as independent variables. The effectiveness of BRI* model in assessing apple bruise resistance was demonstrated by comparing the corresponding relative error for bruise thresholds of BRI and BRI* under the same condition. The relative error ≤3.3% underscores the accuracy of the new model and proves the proposed BRI* model to be an efficient and rapid tool for assessing the degree of apple bruising.</p></div>\",\"PeriodicalId\":9173,\"journal\":{\"name\":\"Biosystems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537511024001181\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001181","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Assessment of apple bruise resistance under transient collisions through X-ray computed tomography and image processing
To evaluate the resistance of apples to bruising under transient impact loads, a pendulum device was initially employed to gather collision data. Subsequently, an image acquisition and processing system was utilised to compute the apple surface bruise area, and X-ray computed tomography technology was utilised to precisely calculate the bruise volume. Based on the CT image and bruise area image analysis, the difference between bruised area and normal tissue on the apple after collision, and effects of impact energy on apple bruising volume and bruise area has been elaborated in detail. Results analysis revealed a general increase in both bruise volume and bruise area with escalating impact energy, and there is a strong correspondence between bruise volume and bruise area across different storage days and impact energies. The relationship between bruise volume and bruise area under different storage duration were also established. On the base of bruise resistance index (BRI) model utilising impact energy and bruise volume as variables, those analysis led to the establishment of a new bruise resistance index (BRI*) model employing impact energy and bruise area as independent variables. The effectiveness of BRI* model in assessing apple bruise resistance was demonstrated by comparing the corresponding relative error for bruise thresholds of BRI and BRI* under the same condition. The relative error ≤3.3% underscores the accuracy of the new model and proves the proposed BRI* model to be an efficient and rapid tool for assessing the degree of apple bruising.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.