{"title":"时变预期收益、条件偏度和比特币收益可预测性","authors":"David Atance, Gregorio Serna","doi":"10.1016/j.qref.2024.101868","DOIUrl":null,"url":null,"abstract":"<div><p>We employ a GARCH-type model to jointly estimate returns, conditional variance and skewness and show that conditional skewness outperforms sample skewness and conditional and sample variance in predicting future Bitcoin returns. Interestingly, the results show that the relationship between conditional skewness and future Bitcoin returns is different depending on the sample period. In the first subsample (2018–2020), a period of relative calm in the Bitcoin market, the relationship is negative, which is in line with that found in the literature. However, in the second subsample (2021–2022), a period of major turmoil in the Bitcoin market, the relationship is positive, which is consistent with that found in previous papers on the relationship between conditional market skewness and future index returns during crisis periods. Based on these results, a dynamic buy and sell strategy of buying or selling Bitcoin based on the estimated conditional skewness is proposed. This dynamic strategy outperforms a static buy-and-hold strategy. The profitability of this strategy can be viewed as the reward that investors demand for bearing the risk associated with the changing conditions in the cryptocurrency market that generate time-varying expected returns.</p></div>","PeriodicalId":47962,"journal":{"name":"Quarterly Review of Economics and Finance","volume":"96 ","pages":"Article 101868"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1062976924000747/pdfft?md5=0c971d107b8910d022a0e168d46df86b&pid=1-s2.0-S1062976924000747-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Time-varying expected returns, conditional skewness and Bitcoin return predictability\",\"authors\":\"David Atance, Gregorio Serna\",\"doi\":\"10.1016/j.qref.2024.101868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We employ a GARCH-type model to jointly estimate returns, conditional variance and skewness and show that conditional skewness outperforms sample skewness and conditional and sample variance in predicting future Bitcoin returns. Interestingly, the results show that the relationship between conditional skewness and future Bitcoin returns is different depending on the sample period. In the first subsample (2018–2020), a period of relative calm in the Bitcoin market, the relationship is negative, which is in line with that found in the literature. However, in the second subsample (2021–2022), a period of major turmoil in the Bitcoin market, the relationship is positive, which is consistent with that found in previous papers on the relationship between conditional market skewness and future index returns during crisis periods. Based on these results, a dynamic buy and sell strategy of buying or selling Bitcoin based on the estimated conditional skewness is proposed. This dynamic strategy outperforms a static buy-and-hold strategy. The profitability of this strategy can be viewed as the reward that investors demand for bearing the risk associated with the changing conditions in the cryptocurrency market that generate time-varying expected returns.</p></div>\",\"PeriodicalId\":47962,\"journal\":{\"name\":\"Quarterly Review of Economics and Finance\",\"volume\":\"96 \",\"pages\":\"Article 101868\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1062976924000747/pdfft?md5=0c971d107b8910d022a0e168d46df86b&pid=1-s2.0-S1062976924000747-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Review of Economics and Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1062976924000747\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Review of Economics and Finance","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1062976924000747","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Time-varying expected returns, conditional skewness and Bitcoin return predictability
We employ a GARCH-type model to jointly estimate returns, conditional variance and skewness and show that conditional skewness outperforms sample skewness and conditional and sample variance in predicting future Bitcoin returns. Interestingly, the results show that the relationship between conditional skewness and future Bitcoin returns is different depending on the sample period. In the first subsample (2018–2020), a period of relative calm in the Bitcoin market, the relationship is negative, which is in line with that found in the literature. However, in the second subsample (2021–2022), a period of major turmoil in the Bitcoin market, the relationship is positive, which is consistent with that found in previous papers on the relationship between conditional market skewness and future index returns during crisis periods. Based on these results, a dynamic buy and sell strategy of buying or selling Bitcoin based on the estimated conditional skewness is proposed. This dynamic strategy outperforms a static buy-and-hold strategy. The profitability of this strategy can be viewed as the reward that investors demand for bearing the risk associated with the changing conditions in the cryptocurrency market that generate time-varying expected returns.
期刊介绍:
The Quarterly Review of Economics and Finance (QREF) attracts and publishes high quality manuscripts that cover topics in the areas of economics, financial economics and finance. The subject matter may be theoretical, empirical or policy related. Emphasis is placed on quality, originality, clear arguments, persuasive evidence, intelligent analysis and clear writing. At least one Special Issue is published per year. These issues have guest editors, are devoted to a single theme and the papers have well known authors. In addition we pride ourselves in being able to provide three to four article "Focus" sections in most of our issues.