{"title":"影响逆流延迟时间的开口位置实验研究","authors":"Chia Lung Wu , Wen Yen Juan","doi":"10.1016/j.firesaf.2024.104184","DOIUrl":null,"url":null,"abstract":"<div><p>Backdraft is a special phenomenon in fire research because of its explosive consequence and the occurrence of uncertainty. The delay time of occurrence has been of interest in recent years as this influences the safety and efficiency of firefighting. This paper investigated the location of the opening and whether it affects the delay time of the backdraft. Results show that the location of the opening dramatically dominates the delay time. The hot/cold air mixing path and instantaneous localized fire ignitions determine the delay time. A ‘curtain-like’ effect for the backdraft time delay was observed. The lower opening demonstrates about 50–70 % delay time compared to the upper and middle locations. In the presence of identical fire conditions and door closure control, the extended flammable gas dilution resulting from the upper opening does not significantly impact the onset of backdraft. Hence, the effective volume above the ignition location determines the delay time of the backdraft. Furthermore, the choice of chamber material is a crucial factor influencing the likelihood of backdraft occurrence. Utilizing a material with enhanced cooling capacity reduces the probability of backdraft. This provides insight into the firefighting and intervention tactics when ventilation-restricted compartment fire occurs.</p></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"147 ","pages":"Article 104184"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study of opening location affecting the delay time of backdraft\",\"authors\":\"Chia Lung Wu , Wen Yen Juan\",\"doi\":\"10.1016/j.firesaf.2024.104184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Backdraft is a special phenomenon in fire research because of its explosive consequence and the occurrence of uncertainty. The delay time of occurrence has been of interest in recent years as this influences the safety and efficiency of firefighting. This paper investigated the location of the opening and whether it affects the delay time of the backdraft. Results show that the location of the opening dramatically dominates the delay time. The hot/cold air mixing path and instantaneous localized fire ignitions determine the delay time. A ‘curtain-like’ effect for the backdraft time delay was observed. The lower opening demonstrates about 50–70 % delay time compared to the upper and middle locations. In the presence of identical fire conditions and door closure control, the extended flammable gas dilution resulting from the upper opening does not significantly impact the onset of backdraft. Hence, the effective volume above the ignition location determines the delay time of the backdraft. Furthermore, the choice of chamber material is a crucial factor influencing the likelihood of backdraft occurrence. Utilizing a material with enhanced cooling capacity reduces the probability of backdraft. This provides insight into the firefighting and intervention tactics when ventilation-restricted compartment fire occurs.</p></div>\",\"PeriodicalId\":50445,\"journal\":{\"name\":\"Fire Safety Journal\",\"volume\":\"147 \",\"pages\":\"Article 104184\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Safety Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379711224000973\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711224000973","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Experimental study of opening location affecting the delay time of backdraft
Backdraft is a special phenomenon in fire research because of its explosive consequence and the occurrence of uncertainty. The delay time of occurrence has been of interest in recent years as this influences the safety and efficiency of firefighting. This paper investigated the location of the opening and whether it affects the delay time of the backdraft. Results show that the location of the opening dramatically dominates the delay time. The hot/cold air mixing path and instantaneous localized fire ignitions determine the delay time. A ‘curtain-like’ effect for the backdraft time delay was observed. The lower opening demonstrates about 50–70 % delay time compared to the upper and middle locations. In the presence of identical fire conditions and door closure control, the extended flammable gas dilution resulting from the upper opening does not significantly impact the onset of backdraft. Hence, the effective volume above the ignition location determines the delay time of the backdraft. Furthermore, the choice of chamber material is a crucial factor influencing the likelihood of backdraft occurrence. Utilizing a material with enhanced cooling capacity reduces the probability of backdraft. This provides insight into the firefighting and intervention tactics when ventilation-restricted compartment fire occurs.
期刊介绍:
Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.